Please click here for a PDF of all 2DCC publications. 

MIP Products

2DCC publications are categorized based on four science drivers listed below. For publications that cross multiple science drivers, the publication is listed in the topic area of primary influence and any secondary drivers are listed at the end of its description using the abbreviation for the driver. Publications for each primary science driver are organized into subsections by publications led by external user, local user, and in-house.

Also noted for each publication with a user are instances where co-authors are from non-R1 or minority-serving institutions or government labs. User project ID# is noted which is also cross-referenced in the MIP User Projects document with the DOI. For user projects, sample-only projects are denoted by “S” in the project number, research projects are denoted by “R” in the project number, and RSVP projects are denoted by “V”.

In the authors lists, bold face is used to designate senior 2DCC faculty (core faculty and research professors that are professional staff in the facility), italic is used to designate senior local users not participating in in-house research, and underline is used to designate senior external users.

Physics of 2D Systems (Phys2D)

Click here for Phys2D Publications Only 

This science driver focuses on providing enabling materials synthesis, characterization, and modeling capabilities to facilitate fundamental studies of new fundamental physical processes that occur in 2D systems, such as efficient spin-charge conversion and the quantum anomalous Hall effect in topological insulators, valleytronics in transition metal dichalcogenides, and quantum transport in 2D heterostructures.

Epitaxy of 2D Chalcogenides (Epi2DC)

Click here for Epi2DC Publications Only 

This science driver seeks to understand fundamental mechanisms of 2D film formation in van der Waals bonded systems including the role of the substrate in nucleation and epitaxy, self-limited growth of monolayers, epitaxy in 2D heterostructures, miscibility and alloy formation, intentional doping, and native defects.

Next Generation Devices (NGDev)

Click here for NGDev Publications Only

This science driver focuses on providing enabling materials synthesis and characterization capabilities to facilitate development of next-generation electronics (2D tunnel transistors, thin film transistors for flexible electronics, etc.) and optoelectronics (2D photodetectors, integrated photonics, single photon sources, etc.).

Advanced Characterization and Modeling (AdvCM)

Click here for AdvCM Publications Only 

This science driver focuses on developing techniques and tools to both probe and model 2D chalcogenide films in situ to study the evolution of surface morphology, lateral and vertical domain growth, growth-related defects and grain boundaries, electronic band structure, carrier transport, closely integrated with theory and simulation that targets key kinetic processes during growth, enables new insights on in situ characterization, and accelerates the process of identifying compelling synthetic targets and overcoming experimental obstacles to their synthesis.