Materials Research Institute | Our integrated research laboratories turn concepts into prototypes Skip to main content

Visit our first ever virtual tour of a lab in the Materials Characterization Lab!

A Virtual Substrate Opens Path to Oxide Films on Silicon for Application in 5G, MEMS, Sensors and Quantum Computation

Add a Carbon Atom to Transform 2D Materials

Defects Key to Growth of 2D Materials

Visitor Program with Corning Scientist a Win for Industry and Penn State

Research News

Jun 20 2019

In 2017, MRI and Penn State began piloting a new program aimed to support the further development of strategic collaboration with industry.

Jun 5 2019

Proof that a new ability to grow thin films of an important class of materials called complex oxides will, for the first time, make these materials commercially feasible, according to Penn State materials scientists. 

Complex oxides are crystals with a composition that typically consists of oxygen and at least two other, different elements. In their crystalline form and depending on the combination of elements, complex oxides display a tremendous range of properties. 

Upcoming 2019 Events

Materials Day: Mind the Gap
Rustum and Della Roy Innovation in Materials Research Award
10 a.m. MSC 3rd Floor Commons
The Millennium Café
SEM Workshop

History of Materials at Penn State

Millennium Café

“Sustainability Challenges in the Domestic Production of Rare Earth and Critical Minerals”

Rare earth elements are used in the manufacture of lighter and stronger materials for energy applications such as gas turbines and wind and power systems, defense applications, electronics, and the medical industry.  2017 data indicates that the US is 100% import dependent for 21 of the 50 non-fuel mineral commodities. This dependence poses a national security threat and as such the US DOE, DOD, and DOI are actively pursuing research and development efforts in this area to expand domestic production. Penn State along with other industrial partners is involved in research efforts to develop physical separation and chemical methods to concentrate rare earths and other critical elements from coal and other waste products. This talk will outline the multidisciplinary nature and challenges in this task that require collaborations across several disciplines.

“Seven Years after a Millennium Café Talk: Reflections on Research and Teaching Collaborations”

Over the past seven years, part of my research has focused on the use of nanoscale and microscale fillers as a strategy to transform the performance of polymers by providing new mechanisms to engineer dielectric, magnetic and coupled functionality, with important implications in actuation, energy harvesting and energy storage. The goal of the talk, which seeks to assess my interdisciplinary experiences with colleagues and students at Penn State and other institutions, is to provide an example of critical self-refection that might prove useful to colleagues interested in making sense of their own collaborative research and teaching practice.

The Millennium Café is held every Tuesday @ 10:00 in the 3rd floor Café Commons of the Millennium Science Complex. Stop by for freshly brewed science & coffee.

The Materials Research Institute

A Culture of Interdisciplinary Research

Penn State’s investment in its interdisciplinary research institutes, including the Materials Research Institute (MRI), has created a culture of strong collaborations across disciplines. At Penn State, many researchers have the support of both their academic departments and the university-wide institutes, such as MRI. By encouraging crosscutting research, MRI and its sister institutes open up traditional silos of knowledge to the stimulus of other viewpoints and new ideas. This mingling of disciplines, often called “convergence,” brings together the physical and life sciences with engineering and computation to solve the most complex problems facing society today and in the future.

Four Lab Solution: Theory, Synthesis, Fabrication, Characterization

NSF MIP Materials Innovation Platform
2D Crystal Consortium (2DCC)

The 2DCC-MIP is focused on advancing the synthesis of 2D materials within the context of a national user facility.

The Materials Characterization Lab
Materials Characterization Lab

The Materials Characterization Lab (MCL) is a fully-staffed, open access, analytical research facility charged with enabling research and educating the next generation of highly qualified researchers.

The Materials Computation Center
Materials Computation Center

Our primary goal is to support internal and external users working in computer-based simulations of materials across the various length and time scales.

The Nanofabrication Lab
Nanofabrication Lab

Our staff scientists and engineers will enable users to transition fundamental research in nanomaterials to innovation-driven multicomponent integrated devices and systems.

New Capabilities & Emerging Materials Research

High-res Image from the TEM
In Situ Characterization

Flurry of innovations in new components that can be placed inside the TEM

Focus on Materials Magazine

In the latest issue of Focus on Materials, the boundaries between materials science, engineering, and the life sciences are blurring. We offer a glimpse into the fascinating world of “convergence,” where the future of healthcare lies.

To receive a FREE printed issue, subscribe to "Printed Materials" and add/update your mailing address.

Sign Up for Print Focus Magazine


Materials-Related Institutes, Facilities, & Centers





Energy Institute




Institute for Cyberscience


Industry and University Collaboration

Every organization has different priorities and resources. Directors of the MRI facilities recognizes this and help your company leverage our labs in various ways.
Find out more...