Every year the world produces more trash and demands more energy. While the integrated biorefinery could produce renewable fuels from waste, its economic viability hinges on the ability to upgrade the unstable bio-oils currently produced, and to develop high-value byproducts. In a new approach to the integrated biorefinery, we incorporate inorganic compounds into cellulosic feedstocks to engineer solid products such as nanomaterials via biotemplating, heterogeneous adsorbents, and tunable carbon electrode materials, while simultaneously upgrading biofuels. This reduces the need for downstream upgrading and improves the economic viability of sustainable biomass to renewable fuel conversions.

Jillian Goldfarb | Energy and Mineral Engineering