Semiconductors designed to deliver extreme capabilities

Student examines sample in Chu's lab

By Jamie Oberdick

Your cellphone probably would not work very well in space. That is because outer space is full of radiation, and radiation causes defects in electronics that can eventually lead to device failure. You and your cellphone are likely not going to be in outer space anytime soon, but if you are an astronaut relying on electronics to get you to and from space without incident, Rongming Chu’s research may one day be key in keeping you safe.

Two-dimensional oxides open door for high-speed electronics

Student works on 2D material in lab

By Matthew Carroll

UNIVERSITY PARK, Pa. – Advances in computing power over the decades have come thanks in part to our ability to make smaller and smaller transistors, a building block of electronic devices, but we are nearing the limit of the silicon materials typically used. A new technique for creating 2D oxide materials may pave the way for future high-speed electronics, according to an international team of scientists.

Penn State leads semiconductor packaging, heterogeneous integration center (JUMP 2.0)

Image of a semiconductor chip in a motherboard

By Ashley WennersHerron

UNIVERSITY PARK, Pa. — The Semiconductor Research Corporation (SRC)’s Joint University Microelectronics Program 2.0 (JUMP 2.0), a consortium of industrial partners in cooperation with the Defense Advanced Research Projects Agency (DARPA), has announced the creation of a $32.7 million, Penn State-led Center for Heterogeneous Integration of Micro Electronic Systems (CHIMES).

New method can scale, simplify manufacture of stretchy semiconductors

Image of a stretchy transistor illuminated from above

By Mariah R. Lucas

UNIVERSITY PARK, Pa. — Soft, elastic semiconductors and circuits could advance wearable medical devices and other emerging technologies, but the high-performance electronics are difficult and expensive to manufacture. A Penn State-led research team plans to make the process easier and cheaper with a new manufacturing method.

They published their approach Nov. 28 in Nature Electronics.