The Millennium Cafe

Exchanging ideas and challenges

Jun 26 2018
“Membranes in Bioprocessing: Virus Removal Filtration”

Semipermeable membranes are used throughout the downstream purification of all biotherapeutics, e.g., monoclonal antibodies which have current sales in excess of $100 billion / year.  This talk will provide a short overview of the key applications of membrane systems in bioprocessing with a specific focus on the use of membrane filtration for the removal of contaminating viruses.  The ability of these membranes to provide highly selective separations is determined by their nanoscale pore structure – recent results from our laboratory using confocal microscopy and SEM provide new insights into the complex virus capture behavior of these porous membranes.

“Sustainability @ PSU: Transdisciplinary Solutions”

This talk shares a vision for sustainability at PSU, it explains what sustainability is in terms of the UN Sustainable Development Goals, and how we plan to achieve them through collaborations across disciplines, colleges and campuses. We invite collaboration on experiential learning, transdisciplinary sustainability solutions, and creating "living labs" at the Sustainability Experience Center.

Jun 19 2018
No Cafe

Due to a situation outside of our control the Millennium Café is cancelled for 6/19. We’ll see you on 6/26 for more interdisciplinary goodness.

Jun 12 2018
“Infectious Diseases and the Importance of Being Different”

Individuals differ in the way they respond to infections, some struggle and suffer, while others are very good at fighting the infection. While genetic differences are important, other factors can contribute to generating highly infectious individuals.  One of these factors is the presence of a second pathogen and the fact that hosts have now to deal with both infections. The outcome is not easily predictable and can affect the dynamics of infection.  

“Unique Functionality of Crystalline Thin Films”

Crystalline oxide and chalcogenide thin films offer functionalities beyond their bulk counterparts. Growing these thin films is not always straight forward and defects frequently mask the properties of interest. In this talk I will highlight selected examples where molecular beam epitaxy (MBE) has enabled the growth of new thin films with unique functionality.

Jun 5 2018
“Good Bugs, Bad Bugs, and How to Tell them Apart”

The safety of our food supply relies on timely and accurate detection of microorganisms that can cause foodborne illness.  Traditional microbiological methods frequently fail to distinguish closely related beneficial bacteria used as biocontrol agents from those that can cause infection.  In such cases, use of genomics methods for accurate and precise identification, and prediction of pathogenic potential becomes invaluable.

“Making Big Molecules Bigger: Opportunities in Polymer Electron Microscopy”

Recent electron microscopy instrumentation advances have aimed to push the resolution limit, leading to remarkable instruments capable of imaging at 0.5 Å.  But, when imaging soft materials, the resolution is often limited by the amount of dose the material can handle rather than the instrumental resolution.  Despite the challenges of working with radiation sensitive samples, recent developments in electron microscopy have the potential to transform polymer electron microscopy.  For example, monochromatated sources enable spectroscopy and imaging based on the valence electronic structure, aberration correctors enable imaging of thick films, direct electron detectors minimize the required dose for imaging, and differential phase contrast imaging can map heterogeneities in electric fields within films.

May 29 2018
“Patterns, Proxies and Predictions: Tools to Monitor CO2 Plume During Sequestration?”

Geological systems such as subsurface reservoirs or aquifers often exhibit complex patterns of spatial heterogeneity in the form of channels, natural fractures, and other features.  The presence of these multi-scale features strongly influences the performance of processes such as gas-injection and groundwater flow.  In this talk, a unique pattern growth algorithm for modeling the complex connectivity of such subsurface systems and a strategy for calibrating the models using injection data will be presented.

“Millennium Café Pitch Competition Winners”

On May 22th 44 students competed in the Millennium Café Pitch Competition sponsored by PPG.  The competition was fierce as students had <2 minutes to introduce their research in a manner that was understandable and inspiring to our panel of judges.  Don’t miss this opportunity to hear four of the top-5 winners from this year’s competition.

Joseph Persichetti  “Modeling the Ensemble Reaction Pathways in Enzyme Catalysis”

Alexis Baxter  “Can Metal Ions Cause Alzheimer’s”

Kayla Gentile  “Self-Powered Micropumps”

Ambika Somasundar  “Controlling the Direction of Motion of Enzyme-coated Liposomes”

May 15 2018
“What’s Up with Water @ Penn State?”

Come learn about what is happening and how you can join water related research, education, and outreach efforts at Penn State.

“Workplace Accidents and Self-Organized Criticality”

The occurrence of workplace accidents is described within the context of self-organized criticality, a theory from statistical physics that governs a wide range of phenomena across physics, biology, geosciences, economics, and the social sciences.  Workplace accident data from the U.S. Bureau of Labor Statistics reveal a power-law relationship between the number of accidents and their severity as measured by the number of days lost from work.  This power-law scaling is indicative of workplace accidents being governed by self-organized criticality, suggesting that nearly all workplace accidents have a common underlying cause, independent of their severity.

May 8 2018
Exploring the Potential for an Extended Period of Habitability on Mars

The primary objective of the NASA Mars Science Laboratory Mission is to investigate the potential habitability of ancient Mars. During this mission, the Curiosity Rover has traversed hundreds of meters of mudstone representing a long-lived series of ancient lakes. Characteristics of the sandstone and conglomerate deposits studied along the traverse indicate that those lakes were sustained by rivers and deltas. Additionally, the mission has found extensive evidence for water having flowed through fractures in the bedrock at a later time of Martian history. Further, the preserved rocks, and their associated minerals, show considerable evidence for different reduction/oxidation states, an important prerequisite for habitability.

Particles Here, There, and Everywhere – New Capabilities for Particle Size and Shape Analysis

Size and shape are important properties of particulate samples. These can influence a wide range of characteristics, such as: texture and feel of food ingredients, flowability of metal powders, and packing density/porosity of ceramics, to name a few. This talk will highlight capabilities and applications of two new particle characterization instruments currently available at Materials Characterization Lab, the Mastersizer 3000 for measuring particle size distribution and the Morphologi G3 SE for imaging size and shape of individual particle.

May 1 2018
There will be no Café on May 1st

The Café will resume on May 8th

Apr 24 2018
The Problem with Heat Transfer Across the Solid-Liquid Interface is that we Have Heat Transfer Across the Interface

Poor understanding of heat transfer across solid-liquid interfaces bottlenecks the development of nanocomposite materials for applications in thermal interface materials, energy generation, catalysis, and thermotherapeutics. Thermal engineers have identified the main parameters governing interfacial heat transfer; however, the interplay among these parameters is rather complex. This talk calls for anybody interested in the topic to develop a proper understanding of interfaces before addressing the problem of heat transfer across interfaces.

Am I Allowed to Spank my Robot? Musings on the Value of Robot Punishment

Punishment, or the threat of punishment, is a critical component for the establishment and maintenance of social system governed by norms. We would like to create robots that obey social norms. Do we then need a means for punishing our robots and, if so, how do punish a robot? This talk examines these and related questions.

Apr 17 2018
“Re-engineering the Integrated Biorefinery: Why I Love Your Trash”

Every year the world produces more trash and demands more energy. While the integrated biorefinery could produce renewable fuels from waste, its economic viability hinges on the ability to upgrade the unstable bio-oils currently produced, and to develop high-value byproducts. In a new approach to the integrated biorefinery, we incorporate inorganic compounds into cellulosic feedstocks to engineer solid products such as nanomaterials via biotemplating, heterogeneous adsorbents, and tunable carbon electrode materials, while simultaneously upgrading biofuels. This reduces the need for downstream upgrading and improves the economic viability of sustainable biomass to renewable fuel conversions.

“New Materials through Supramolecular Engineering”

Supramolecular chemistry is a strategy to engineer materials through directional noncovalent interactions (e.g., hydrogen bonds, host-guest interactions, metal coordination). Despite the dynamic and reversible nature of supramolecular interactions, their full integration into synthetic materials design platforms is sluggish. Nature, however, fabricates some of the most beautiful 1D, 2D, and 3D self-assembled architectures using a combined array of complex synthetic techniques and exploitation of noncovalent chemistry. So the question arises… why can’t we do the same to control molecular architecture?

  • 3 of 15