In-place manufacturing method improves gas sensor capabilities, production time

Gas sensor capabilitites

By Mariah R. Lucas

When used as wearable medical devices, stretchy, flexible gas sensors can identify health conditions or issues by detecting oxygen or carbon dioxide levels in the breath or sweat. They also are useful for monitoring air quality in indoor or outdoor environments by detecting gas, biomolecules and chemicals. But manufacturing the devices, which are created using nanomaterials, can be a challenge. 

Researchers uncover mechanisms to easily dry, redisperse cellulose nanocrystals

Man and two women in a lab readying a sample of cellulose

By Maria R. Lucas

UNIVERSITY PARK, Pa. — Cellulose nanocrystals — bio-based nanomaterials derived from natural resources such as plant cellulose — are valuable for their use in water treatment, packaging, tissue engineering, electronics, antibacterial coatings and much more. Though the materials provide a sustainable alternative to non-bio-based materials, transporting them in liquid taxes industrial infrastructures and leads to environmental impacts.