Combining novel biomaterial and microsurgery might enable faster tissue recovery

Illustration of biomaterial and microsurgery

By Jamie Oberdick

For soft tissue to recover and regrow, it needs blood vessels to grow to deliver oxygen and nutrients. Sluggish vascularization, however, can slow or even prevent recovery and regrowth of lost or damaged soft tissue after a severe injury or serious illness such as cancer. To speed up the formation and patterning of new blood vessels, Penn State researchers have combined a novel biomaterial with a microsurgical approach used in reconstructive surgery, enabling improved recovery of soft tissue.

3D-printed skin closes wounds and contains hair follicle precursors

3D printing in Penn State Lab

By Ashley WennersHerron

Fat tissue holds the key to 3D printing layered living skin and potentially hair follicles, according to researchers who recently harnessed fat cells and supporting structures from clinically procured human tissue to precisely correct injuries in rats. The advancement could have implications for reconstructive facial surgery and even hair growth treatments for humans.

3D printing affordable, sustainable and resilient housing in Alaska

3D printed concrete photo

Alaska needs an estimated 27,500 new housing units over the next 10 years to alleviate overcrowding and unsanitary conditions, according to the Alaska Housing Foundation Corporation. An interdisciplinary team of Penn State researchers led by José Pinto Duarte, Stuckeman Chair in Design Innovation and director of the Stuckeman Center for Design Computing (SCDC) in the College of Arts and Architecture’s Stuckeman School, is looking to alleviate some of that stress with a $376,000 U.S. Department of Housing and Urban Development (HUD) grant.

Dual-energy harvesting device could power future wireless medical implants

Research Group Photo

By Matthew Carroll

Implantable biomedical devices — like pacemakers, insulin pumps and neurostimulators — are becoming smaller and utilizing wireless technology, but hurdles remain for powering the next-generation implants. A new wireless charging device developed by Penn State scientists could dramatically improve powering capability for implants while still being safe for our bodies, the researchers said.

Modified soft material promises better bioelectronics, researchers say

Enrique Gomez photo

Soft bioelectronic devices hold potential for many advances in the health care field, but researchers have faced hurdles in identifying materials that are biocompatible while still maintaining all necessary characteristics to operate effectively. A team co-led by Penn State researchers has now taken a step toward achieving such a material, modifying an existing biocompatible material to conduct electricity efficiently in wet environments, as well as send and detect ionic currents within biological media.

Their results were published in the journal Matter.

Optical invention mirrors the image processing power of a human eye

Optical invention - metasurface image

By Maria R. Lucas

On a cold, sunny day, you’re driving on a rural road, surrounded by snow-covered fields. In an instant, your eyes process the scene, picking out individual objects to focus on — a stop sign, a barn — while the rest of the scene blurs in the periphery. Your brain stores the focused and blurred images as a memory that can be pictured in your mind later, while sitting at your desk.  

Edward Smith

Edward Smith

Professor

(e) ecs5@psu.edu
(o) 814-863-0966
231D Hammond Building

https://www.aero.psu.edu/Faculty_Staff/smith/index.htm
Jon Schwantes

Jon Schwantes

Acting Department Head of Nuclear Engineering

(e) jms11028@psu.edu, (e) jon.schwantes@psu.edu
(o) 814-865-6351
206 Hallowell Building