Converting Small Amounts of Freely Available Energy into Electricity

There are many forms of energy around us: light, heat, vibrations, wind, electromagnetic fields, fluid flow, waves, organic waste, etc. At large scale, many of these energy sources already play a significant role in powering our society and are projected to become dominant contributors by 2040. On the smaller scale, exciting scientific and engineering challenges must be overcome to harness these energy sources.

Date of Café

Bayside Room

First Room
Make yourself at home in your stylish suite, which offers perks like a furnished balcony and a hot tub, as well as views of the Aegean Sea. Your stay here includes meals and beverages from all of our five resort restaurants and two bars, as well as 24-hour room service.
Dipanjan Pan

Dipanjan Pan

Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine
Professor of Materials Science and Engineering, Professor of Nuclear Engineering

205 Hallowell Building

‘Surprising’ hidden activity of semiconductor material spotted by researchers

Prof. Gopalan in lab with students

By Jamie Oberdick

New research suggests that materials commonly overlooked in computer chip design actually play an important role in information processing, a discovery which could lead to faster and more efficient electronics. Using advanced imaging techniques, an international team led by Penn State researchers found that the material that a semiconductor chip device is built on, called the substrate, responds to changes in electricity much like the semiconductor on top of it.

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

SCIA News Graphic

By Jamie Oberdick

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is increasingly becoming essential to modern technologies like electric vehicles, renewable energy systems, telecommunications infrastructure and microelectronics.  

Butterfly-inspired AI technology takes flight

By Jamie Oberdick

When it comes to mating, two things matter for Heliconius butterflies: the look and the smell of their potential partner. The black and orange butterflies have incredibly small brains, yet they must process both sensory inputs at the same time — which is more than current artificial intelligence (AI) technologies can achieve without significant energy consumption. To make AI as smart as the butterflies, a team of Penn State researchers have created a multi-sensory AI platform that is both more advanced and uses less energy than other AI technologies.  

Scientists develop new method to create stable, efficient next-gen solar cells

Solar Cell Material image

By Matthew Carroll

Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique developed by a team of international scientists could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.

Backyard insect inspires invisibility devices, next gen tech

TEM of Brochosomes

By Jamie Oberdick

Leafhoppers, a common backyard insect, secrete and coat themselves in tiny mysterious particles that could provide both the inspiration and the instructions for next-generation technology, according to a new study led by Penn State researchers. In a first, the team precisely replicated the complex geometry of these particles, called brochosomes, and elucidated a better understanding of how they absorb both visible and ultraviolet light.