Shrinking materials hold big potential for smart devices, researchers say

Wearable device ring tested in lab

Wearable electronics could be more wearable, according to a research team at Penn State. The researchers developed a scalable, versatile approach to designing and fabricating wireless, internet-enabled electronic systems that can better adapt to 3D surfaces, like the human body or common household items, paving the path for more precise health monitoring or household automation, such as a smart recliner that can monitor and correct poor sitting habits to improve circulation and prevent long-term problems.

3D-printed skin closes wounds and contains hair follicle precursors

3D printing in Penn State Lab

By Ashley WennersHerron

Fat tissue holds the key to 3D printing layered living skin and potentially hair follicles, according to researchers who recently harnessed fat cells and supporting structures from clinically procured human tissue to precisely correct injuries in rats. The advancement could have implications for reconstructive facial surgery and even hair growth treatments for humans.

3D printing affordable, sustainable and resilient housing in Alaska

3D printed concrete photo

Alaska needs an estimated 27,500 new housing units over the next 10 years to alleviate overcrowding and unsanitary conditions, according to the Alaska Housing Foundation Corporation. An interdisciplinary team of Penn State researchers led by José Pinto Duarte, Stuckeman Chair in Design Innovation and director of the Stuckeman Center for Design Computing (SCDC) in the College of Arts and Architecture’s Stuckeman School, is looking to alleviate some of that stress with a $376,000 U.S. Department of Housing and Urban Development (HUD) grant.

Replacing 3D printing plastics with plant-derived materials

Replace 3D printing plastics

By Jeff Mulhollem

USDA grant to fund Penn State researchers developing new and sustainable materials from lignocellulosic biomass

 

A sustainable resin material comprising agriculturally derived components could potentially replace plastics used in large-format 3D printing, which can produce furniture, boats and other similarly sized objects, according to a team of Penn State agricultural and biological engineers.

Penn State researchers use ultrasound to control orientation of small particles

two men reviewing research findings on a laptop in a lab.

By Sarah Small

Acoustic waves may be able to control how particles sort themselves. While researchers have been able to separate particles based on their shape — for example, bacteria from other cells — for years, the ability to control their movement has remained a largely unsolved problem, until now. Using ultrasound technology and a nozzle, Penn State researchers have separated, controlled and ejected different particles based on their shape and various properties.