High-tech sticker can identify real human emotions

Finger holding a sticker sensor

By Adrienne Berard

Saying one thing while feeling another is part of being human, but bottling up emotions can have serious psychological consequences like anxiety or panic attacks. To help health care providers tell the difference, a team led by scientists at Penn State has created a stretchable, rechargeable sticker that can detect real emotions — by measuring things like skin temperature and heart rate — even when users put on a brave face.

Biosensing platform simultaneously detects vitamin C and SARS-CoV-2

a biosensing platform based of a commercial transistor

By Mariah Lucas

UNIVERSITY PARK, Pa. — In the COVID-19 pandemic era, at-home, portable tests were crucial for knowing when to wear a mask or isolate at home. Now, Penn State engineering researchers have developed a portable and wireless device to simultaneously detect SARS-CoV-2, the virus that causes COVID-19, and vitamin C, a critical nutrient that helps bolster infection resistance, by integrating commercial transistors with printed laser-induced graphene.  

Shining a light on molecules: L-shaped metamaterials can control light direction

Scientific image taken by a microscope

Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves — until now.

Method for producing sulfur compounds in cells shows promise for tissue repair

lab image showing a needle dropping a sample into a structure

Sulfur-based compounds produced in our bodies help fight inflammation and create new blood vessels, among other responsibilities, but the compounds are delicate and break down easily, making them difficult to study. A team led by Penn State scientists have developed a new method to generate the compounds — called polysulfides — inside of cells, and the work could potentially lead to advances in wound treatment and tissue repair.

Dipanjan Pan

Dipanjan Pan

Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine
Professor of Materials Science and Engineering, Professor of Nuclear Engineering

205 Hallowell Building