New smart sensor takes the pain out of wound monitoring
Laser-made, ultra-thin material enables precise, self-powered tracking of healing wounds
By Jamie Oberdick
By Jamie Oberdick
By Mariah Lucas
UNIVERSITY PARK, Pa. — In the COVID-19 pandemic era, at-home, portable tests were crucial for knowing when to wear a mask or isolate at home. Now, Penn State engineering researchers have developed a portable and wireless device to simultaneously detect SARS-CoV-2, the virus that causes COVID-19, and vitamin C, a critical nutrient that helps bolster infection resistance, by integrating commercial transistors with printed laser-induced graphene.
By Sarah Small
Continuously monitoring a person’s pulse can provide meaningful medical information, such as heart rate and, indirectly, blood pressure. However, pulse waves can vary dramatically from person to person and even within the same person at different times of day and during different activities. These variations make it difficult for current wearable pulse sensors to accurately record useful data, which is especially problematic for those with cardiovascular disease or high-risk factors for those diseases.
By Jamie Oberdick
UNIVERSITY PARK, Pa. — To enhance biosensor development via artificial intelligence (AI) and offer STEM education opportunities to K-12 students from underserved communities, the U.S. National Science Foundation recently awarded researchers at Penn State a three-year, $1.5 million grant.
By Ashley WennersHerron
A recently developed electronic tongue is capable of identifying differences in similar liquids, such as milk with varying water content; diverse products, including soda types and coffee blends; signs of spoilage in fruit juices; and instances of food safety concerns. The team, led by researchers at Penn State, also found that results were even more accurate when artificial intelligence (AI) used its own assessment parameters to interpret the data generated by the electronic tongue.
Butterflies can see more of the world than humans, including more colors and the field oscillation direction, or polarization, of light. This special ability enables them to navigate with precision, forage for food and communicate with one another. Other species, like the mantis shrimp, can sense an even wider spectrum of light, as well as the circular polarization, or spinning states, of light waves. They use this capability to signal a “love code,” which helps them find and be discovered by mates.
By Sarah Small
To advance soft robotics, skin-integrated electronics and biomedical devices, researchers at Penn State have developed a 3D-printed material that is soft and stretchable — traits needed for matching the properties of tissues and organs — and that self-assembles. Their approach employs a process that eliminates many drawbacks of previous fabrication methods, such as less conductivity or device failure, the team said.
They published their results in Advanced Materials.
By Andrew Krebs
Continuous monitoring of sweat can reveal valuable information about human health, such as the body’s glucose levels. However, wearable sensors previously developed for this purpose have been lacking, unable to withstand the rigors or achieve the specificity needed for continuous monitoring, according to Penn State researchers. Now, the research team has created a novel wearable patch that may be up to the task.
By Jamie Oberdick
UNIVERSITY PARK, Pa. — One of the more innovative energy-saving tools at Penn State was not implemented by a faculty member, employee, or graduate student. Instead, it was developed by undergraduate students who are part of an innovative and unique research fellowship offered by the Materials Research Institute (MRI).
The neuron, developed by Penn State researchers, processes visual and tactile input together
By Ashley WennersHerron