Piezoelectric and Dielectric Properties of Pb(Zr,Ti)O$_3$ Ferroelectric Bilayers

Alexie Grigoriev, Chun Yang, Mandana Hendrickson, Oliver Causey, D.A. Walko, Daniel S. Tinberg and Susan Trolier-McKinstry

The dielectric and piezoelectric properties of an epitaxial PbZr$_{0.8}$Ti$_{0.2}$O$_3$/PbZr$_{0.6}$Ti$_{0.4}$O$_3$ ferroelectric bilayer film were studied. Time-resolved synchrotron x-ray microdiffraction provided access to layer specific structural information during electric-field-induced changes. The observed dielectric and electromechanical responses are consistent with a weak electrostatic polarization coupling and can be described using a thermodynamic model of epitaxial ferroelectric bilayers. The weak electrostatic coupling between ferroelectric layers can enable unusual tail-to-tail and head-to-head polarization configurations. X-ray measurements of the piezoelectric response of the ferroelectric bilayer at a microsecond time scale confirmed a possible tail-to-tail polarization domain configuration.