Low Temperature Crystallization of Metastable Nickel Manganite Spinel Thin Films

Author(s): S.W. Ko¹; H.M. Schulze²; D.B. Saint John²; N.J. Podraza³; E.C. Dickey⁴; and S. Trolier-McKinstry¹,²

Source: JOURNAL OF THE AMERICAN CERAMIC SOCIETY Volume: 95 Issue: 8
Special Issue: SI Pages: 2562-2567 DOI: 10.1111/j.1551-2916.2012.05201.x Published: AUG 2012

Abstract: Single-phase metastable cubic spinel nickel manganite films, \(0.5 = \frac{\text{Mn}}{(\text{Mn}+\text{Ni})} = 0.8 \), were produced using chemical solution deposition. Of these, the sample with \(\frac{\text{Mn}}{(\text{Mn}+\text{Ni})} = 0.80 \) showed the lowest electrical resistivity. Films annealed in Argon at 400 degrees C for 5 h exhibit temperature coefficient of resistance values ranging from -3.81 to -3.93%/K and electrical resistivities of 10 kΩ-cm. It was found by transmission electron microscopy that the metastable spinel phase appeared in both pyrolyzed and post-deposition annealed films. Spectroscopic ellipsometry measurements over the spectral range from 0.75 to 6.0 eV showed that the complex dielectric function spectra (\(e = e_1 + ie_2 \)) varied as a function of the annealing conditions, due at least in part to changes in film density. Aging experiments have been used to identify variations in resistivity and temperature coefficient of resistance as functions of time to assess material stability. As a result, the aging coefficient was 6.5% for a film with \(\frac{\text{Mn}}{(\text{Ni}+\text{Mn})} = 0.80 \) after aging at 150 degrees C for 500 h.

Addresses:
1. Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
2. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
3. Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
4. N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA