Domain Wall Motion Across Various Grain Boundaries in Ferroelectric Thin Films

Daniel M. Marincel1, Huairuo Zhang2, Stephen Jesse3, Alex Belianinov3, M. Baris Okatan, Sergei V. Kalinin3, W. Mark Rainforth2, Ian M. Reaney2, Clive A. Randall1, and Susan Trolier-McKinstry1,*

1 Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16801, USA
2 Department of Materials Science and Engineering, The University of Sheffield, Sheffield, S13JD, UK
3 The Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

Domain wall movement at and near engineered 10\textdegree, 15\textdegree, and 24\textdegree tilt and 10\textdegree and 30\textdegree twist grain boundaries was measured by band excitation piezoresponse force microscopy for Pb(Zr,Ti)O\textsubscript{3} films with Zr/Ti ratio of 45/55 and 52/48. A minimum in nonlinear response was observed at the grain boundary for the highest angle twist and tilt grain boundaries, while a maximum in nonlinear response was observed at the 10\textdegree tilt grain boundaries. The observed nonlinear response was correlated to the domain configurations imaged in cross section by transmission electron microscopy.