Domain Wall Motion Across Various Grain Boundaries in Ferroelectric Thin Films

 Daniel M. Marincel¹, Huairuo Zhang², Stephen Jesse³, Alex Belianinov³, M. Baris Okatan, Sergei V. Kalinin³, W. Mark Rainforth², Ian M. Reaney², Clive A. Randall¹, and Susan Trolier-McKinstry^{1.*}
¹ Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16801, USA

² Department of Materials Science and Engineering, The University of Sheffield, Sheffield, S13JD, UK ³ The Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

Domain wall movement at and near engineered 10°, 15°, and 24° tilt and 10° and 30° twist grain boundaries was measured by band excitation piezoresponse force microscopy for Pb(Zr,Ti)O3 films with Zr/Ti ratio of 45/55 and 52/48. A minimum in nonlinear response was observed at the grain boundary for the highest angle twist and tilt grain boundaries, while a maximum in nonlinear response was observed at the 10° tilt grain boundaries. The observed nonlinear response was correlated to the domain configurations imaged in cross section by transmission electron microscopy.