Dielectric, Ferroelectric, and Optical Properties

Susanne Hoffmann-Eifert, Peter Grünberg Institute & JARA-FIT, Forschungszentrum Jülich, Germany

Dieter Richter, Jülich Centre for Neutron Science & Institute for Complex Systems, Forschungszentrum Jülich, Germany

Susan Trolier-Mc Kinstry, MATSE Department, Pennsylvania State University, USA

Content

1 Introduction .. 35

2 Polarization of Condensed Matter 35
2.1 Electrostatic Equations with Dielectrics 36
2.2 Microscopic Approach and the Local Field 36
2.3 Mechanisms of Polarization 37
2.4 The Complex Dielectric Permittivity 37
2.5 Spontaneous Polarization 38

3 Polarization Waves in Ionic Crystals 41
3.1 Acoustic and Optical Phonons 41
3.2 Polaronics 42
3.3 Consequences of the Concept of Polaritons 44
3.4 Characteristic Oscillations in Perovskite-type Oxides 45

4 Ferroelectrics 46
4.1 Ginzburg-Landau Theory 46
4.2 Soft Mode Approach of Displacive Phase Transition 49
4.3 Ferroelectric Materials 49
4.4 Ferroelectric Domains 50

5 Optical Properties 54
5.1 Propagation of Electromagnetic Waves in Condensed Matter 54
5.2 Transmission of Electromagnetic Waves 56
5.3 Interaction of Light with Matter 58

6 Closing Remarks 59