Magnetic color symmetry of lattice rotations in a diamagnetic material

Author(s): Denev S (Denev, S.)¹, Kumar A (Kumar, A.)¹, Biegalski MD (Biegalski, M. D.)¹, Jang HW (Jang, H. W.)², Folkman CM (Folkman, C. M.)², Vasudevarao A (Vasudevarao, A.)³, Han Y (Han, Y.)³, Reaney IM (Reaney, I. M.)³, Trolier-McKinstry S (Trolier-McKinstry, S.)³, Eom CB (Eom, C. -B.)³, Schlom DG (Schlom, D. G.)³, Gopalan V (Gopalan, V.)¹

Addresses:
1. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
2. Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
3. Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire England

Source: PHYSICAL REVIEW LETTERS Volume: 100 Issue: 25 Article Number: 257601 Published: JUN 27 2008

Abstract: Oxygen octahedral rotations are the most common phase transitions in perovskite crystal structures. Here we show that the color symmetry of such pure elastic distortions is isomorphic to magnetic point groups, which allows their probing through distinguishing polar versus magnetic symmetry. We demonstrate this isomorphism using nonlinear optical probing of the octahedral rotational transition in a compressively strained SrTiO₃ thin film that exhibits ferroelectric (4mm) and antiferrodistortive (4’mm’) phases evolving through independent phase transitions. The approach has broader applicability for probing materials with lattice rotations that can be mapped to color groups.