Ferroelectric and Ferroelastic Domain Wall Motion in Unconstrained Pb(Zr,Ti)O$_3$ Microtubes and Thin Films

Author(s): S.S.N Bharadwaja1, P.J. Moses 1, S. Trolier-McKinstry4, T.S. Mayer 2, P. Bettotti 3, L. Pavesi 3
1. Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
2. Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
3. Univ Trent, Dept Phys, Povo, Italy
4. Penn State Univ, WM Keck Smart Mat Integrat Lab, University Pk, PA 16802 USA

Source: IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
Volume: 57 Issue: 4 Pages: 792-800 Published: APR 2010

Abstract: Ferroelectric polarization switching of high aspect ratio (>80:1) PbZr$_{0.52}$Ti$_{0.48}$O$_3$ (PZT) microtubes with a wall thickness of ~200 nm was investigated. A charge-based technique was used to assess the dielectric and ferroelectric properties of individual mechanically-unconstrained PZT microtubes with interdigitated electrodes. An enhancement in the degree of ferroelastic (non-180°) domain wall motion was observed in the tubes relative to films of similar thickness on rigid substrates. The dielectric response of the tubes showed a Rayleigh-like ac field dependence over a wide temperature range; the extent of the extrinsic contribution to the dielectric response dropped as the temperature approached 10K, but remained finite. This work demonstrates a general methodology for directly electrically addressing small, unconstrained ferroelectric devices, extending the range of driving fields and temperatures over which these materials can be probed.