Giant Piezoelectricity on Si for Hyperactive MEMS


Source: SCIENCE Volume: 334 Issue: 6058 Pages: 958-961 DOI: 10.1126/science.1207186 Published: NOV 18 2011

Abstract: Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 +/- 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

Addresses:
1. 1. Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
2. Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
3. Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
4. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
5. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
6. Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
7. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
8. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
9. Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA

E-mail Address: eom@engr.wisc.edu