Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy

Author(s): Ovchinnikov O (Ovchinnikov, O.)1,2, Jesse S (Jesse, S.)1,2, Guo S (Guo, S.)1,2, Seal K (Seal, K.)1,2, Bintachitt P (Bintachitt, P.)4,5, Fujii I (Fujii, I.)4,5, Trolier-McKinstry S (Trolier-McKinstry, S.)4,5, Kalinin SV (Kalinin, S. V.)1,2

Addresses:
1. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
2. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
3. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
4. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
5. Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA

Source: APPLIED PHYSICS LETTERS Volume: 96 Issue: 11 Article Number: 112906 Published: MAR 15 2010

Abstract: Polarization switching in polycrystalline ferroelectric capacitors is explored using piezoresponse force microscopy (PFM) based first-order reversal curve (FORC) measurements. The band excitation method facilitates decoupling the electromechanical responses from variations in surface elastic properties. A simulated annealing method is developed to estimate the Preisach densities from PFM FORC data. Microscopic and macroscopic Preisach densities are compared, illustrating good agreement between the two.