Room-temperature electro-optic properties of strained SrTiO_{3} films grown on DyScO_{3}

Author(s): Ma HZ (Ma, Hongzhou) ${ }^{\frac{1}{2}}$, Levy J (Levy, Jeremy) ${ }^{\frac{1}{2}}$, Biegalski MD (Biegalski, Michael D. $)^{2}$, Trolier-McKinstry S (Trolier-McKinstry, Susan) ${ }^{2}$, Schlom DG (Schlom, Darrell G.) ${ }^{\frac{3}{3}}$
Addresses:
1. Univ Pittsburgh, Dept Phys \& Astron, Pittsburgh, PA 15260 USA
2. Penn State Univ, Dept Mat Sci \& Engn, University Pk, PA 16802 USA
3. Cornell Univ, Dept Mat Sci \& Engn, Ithaca, NY 14853 USA
Source: JOURNAL OF APPLIED PHYSICS Volume: 105 Issue: 1 Article Number:
014102 Published: JAN 12009

Abstract

The electro-optic response of epitaxially strained SrTiO_{3} grown on bulk DyScO_{3} substrates is measured as a function of applied in-plane bias (both magnitude and direction) and light polarization. The effective electro-optic coefficients are bias-field dependent. Hysteresis is observed at room temperature, indicative of residual polarity, which is believed to be due to long-lived alignment of nanopolar regions possibly due to defects. A simple model incorporating non- 180°-nanoscale domains can account for most of the experimental observations. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3042238]

