γ-NaAsSe\textsubscript{2}: a 1-D Chain-like Crystal with Giant Nonlinear Optical Susceptibility Enhanced by Lone-Pair Electrons

J. He, A. K. Iyer, M. J. Waters, S. Sarkar, R. Zu, J. M. Rondinelli, M.G. Kanatzidis, V. Gopalan

Novel nonlinear optical (NLO) crystals are of great interest for infrared laser applications in recent years because they can convert the frequency/color of a given laser line to the one of interest by combining or splitting photons. Second harmonic generation (SHG), for instance, is a second-order NLO effect that combines two identical photons into a photon with twice the frequency. Currently, only a few infrared NLO crystals are commercially available such as AgGaS\textsubscript{2} and AgGaSe\textsubscript{2}, which limits the advancements of infrared lasers. Hence, new NLO crystals with superior properties are needed to address this technological gap.

γ-NaAsSe\textsubscript{2} crystal is promising toward this goal for its outstanding polycrystalline SHG performance (75×AgGaSe\textsubscript{2}); however, for commercialization, it is crucial to study the complete optical properties and understand the structure-property relationship. Here, we systematically assessed γ-NaAsSe\textsubscript{2} as a future infrared NLO crystal. First, the anisotropic linear optical tensor was examined by spectroscopic ellipsometry and Fourier-Transform Infrared (FTIR) spectroscopy. Next, the NLO susceptibilities of γ-NaAsSe\textsubscript{2} were studied using a self-designed SHG polarimetry setup. Through systematic optical modeling, we extracted a giant SHG coefficient of \(d_{11}=590\text{pm V}^{-1}\text{ at 2μm}\) (highest among all known materials). Moreover, it has a wide transparency range extending from 0.66μm to at least 16μm, which allows broadband tunability. The non-phase-matched NLO conversion efficiency of γ-NaAsSe\textsubscript{2} was calculated to be over 500 times greater than AgGaSe\textsubscript{2}, making it promising for orientation patterned quasi-phase-matching devices. Furthermore, we explored the origin of the large SHG response to understand the structure-property relationship. We found that the lone pairs electrons of As, Se, and Se in the [AsSe\textsubscript{2}]\textsubscript{−} chains significantly enhanced the NLO performance. The lone pair vector addition suggested that \(d_{11}\) has the largest value, consistent with the experiment. These outstanding optical properties make γ-NaAsSe\textsubscript{2} a promising NLO crystal for future infrared laser applications.