Transport studies on 2D ferromagnetic Mn(Bi,Sb)₆Te₁₀/BN/graphite tunneling junction and 2D antiferromagnetic MnPS₃/graphene QH heterostructures

C. Drew^{1,2}, Y. Chen^{1,2}, S. H. Lee^{1,2}, K. Watanabe³, T. Taniguchi⁴, Z. Mao^{1,2}, J. Zhu^{1,2}

¹Department of Physics, ²2D Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, USA, ³Research Center for Functional Materials, ⁴International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

Two-dimensional van der Waals magnets hosting novel quantum states are fundamentally interesting and potentially useful in low-power electronics. In this poster, we report on the studies of ferromagnetic Mn(Bi,Sb)₆Te₁₀ using tunneling spectroscopy and magnon transport in antiferromagnetic MnPS₃ using non-local transport techniques. Transport measurements of exfoliated Mn(Bi_{0.88},Sb_{0.12})₆Te₁₀ sheets show a Curie temperature of ~11 K and a coercive field of ~ 0.02 T at 2 K, in agreement with bulk measurements. We build vertical tunnel junctions using graphite electrode and thin h-BN barrier to probe the surface density of states of Mn(Bi_{0.88},Sb_{0.12})₆Te₁₀ and observed a suppressed differential tunneling conductance in a small range of biases (~15 mV) near V_{dc}=0 at low temperatures. This observation is consistent with a magnetic exchange gap. We developed a new non-local transport method to study magnon transmission through MnPS₃, which utilizes the quantum Hall edge states of bilayer graphene as injector and detector. We study both linear response and thermally generated magnons systematically as a function of temperature and magnetic field and relate the findings to the magnetic properties of MnPS₃. This method can potentially be used to probe the magnetic order and excitations of other van der Waals magnets.