First-Principles Density Functional Theory Investigation of Oxygen and Water Adsorption on the (010), (100), and (111) Surfaces of BaZrS₃

*H. I. Eya and N. Y. Dzade

In the last decade, perovskites have attracted remarkable attention as promising alternatives to silicon in the solar industry to achieve more efficient and cost-effective solar cells owing to their outstanding optical and electronic properties and low synthesis costs. However, the conventional hybrid organic-inorganic halide perovskites are highly unstable and toxic, which has hindered their commercialization. Recently, chalcogenide perovskites (CPs) have emerged as promising candidates to overcome these challenges. Among CPs, BaZrS₃ has attracted more attention owing to its excellent optoelectronic properties and high stability. However, to guarantee long-term performance under atmospheric conditions, it is important to gain a fundamental understanding of the interactions between BaZrS₃ surfaces and atmospheric agents, such as O₂ and H₂O. Herein, we employed density functional theory to study the adsorption of H₂O and O₂ molecules on the (010), (100), and (111) surfaces of BaZrS₃. On all three surfaces, the Zr sites were more reactive than the Ba sites towards H₂O and O₂. Generally, O₂ molecules adsorbed more strongly at the Zr sites than H₂O molecules, with significant charge transfer from the interacting surface species. Consistent with their stronger adsorption, O_2 molecules drew more charges from the interacting species than H_2O , oxidizing them to a greater extent. With the surface structures preserved upon H_2O and O_2 adsorption, we observed only small adsorption-induced changes in electronic properties, with the covered surface exhibiting slightly smaller band gaps than the bare surfaces. These results demonstrate a high degree of thermodynamic and atmospheric stability of BaZrS₃ surfaces and show that, unlike halide perovskites, the exposure of BaZrS₃ thin-film surfaces to H₂O and O₂ molecules may not have significant detrimental effects on their PV performance.