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ABSTRACT

Crack initiation stresses for different lead zirconate titanate (PZT) film compositions were investigated. PZT/Pt/TiO2/SiO2/Si stacks with 2.0
lm thick {100} oriented PZT films at the morphotropic phase boundary (MPB) showed a characteristic strength of 1137MPa, and the film
thickness served as the limiting flaw size for failure of the film/substrate stack. In contrast, for Zr/Ti ratios of 40/60 and 30/70, the
characteristic stack strength increased while the Weibull modulus decreased to values typical for that of Si. This difference is believed to be
due to toughening from ferroelasticity or phase switching. X-ray diffraction showed that the volume fraction of c-domains increased in Ti-
rich compositions. This would allow for more switching from c to a-domains under biaxial tensile stress. Zr/Ti concentration gradients were
present for all compositions, which contributed to the observation of a rhombohedral phase off the MPB. Due to the reduced tendency
toward cracking, off-MPB compositions are potentially of interest in actuators, albeit with the trade-off of needing a high actuation voltage.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106340

Thin film-based piezoelectric devices are typically driven to high
fields and are subject to higher stresses and strains than are bulk
ceramics of the same composition. These films often have high levels
of residual stresses, which affect both the domain structure and piezo-
electric properties.1–5 Moreover, if the combination of residual stress,
applied stress, and piezoelectrically induced stresses exceeds a
material-dependent threshold, it can induce cracks or delamina-
tions.6,7 Film thickness, poling conditions, lead content, crystallo-
graphic orientation, temperature, dopants, surface quality, and grain
size8–16 all influence crack formation in PZT films and ceramics.
Cracking in piezoelectric films can also induce subsequent thermal
dielectric breakdown events, causing failure.17,18 Thus, the knowledge
of the mechanical limits of PZT is required to appropriately design use
conditions for the films.

One factor that can influence the propensity for cracking in PZT
ceramics is toughening associated with either stress-induced ferroelas-
tic domain reorientation or stress-induced phase changes. PZT
ceramics tend to become tougher as cracks elongate—this is known as
R-curve behavior. It is reported that stress-induced ferroelastic domain
switching is the primary toughening mechanism in PZT ceramics.15–26

When a crack tip domain is exposed to high mechanical stress under
an applied load, the ferroelastic domains reorient to reduce the local
stresses.

Ferroelastic toughening is influenced by three material proper-
ties: coercive stress, saturated strain, and elastic modulus.16–27 Of
these, the coercive stress has the greatest influence on toughness
enhancement, as it determines the process zone size.19 In principle,
ferroelastic toughening should increase with greater lattice distor-
tion (e.g., higher tetragonal PZT distortions) such that a given
volume fraction of the domain reorientation would lead to larger
compressive stresses on the crack.14–19 A second reported contribu-
tion to toughening is stress-induced phase transformations. During
mechanical loading, adjacent grains interact with one another, gen-
erating local stresses, which drive transformations between different
ferroelectric distortions.27

The phenomenon of stress-induced ferroelastic domain switch-
ing and phase transformation is well documented in the literature.
Zhang et al. showed that when PZT ceramics are subjected to high
compressive stress, the elastic stiffening behavior differs for PZT-5H,
PZT-5A, PTZ-4, and PZT-8. The coercive stresses for soft ceramics
were reported to be �40–50MPa; for hard ceramics, they were
�60–150MPa.28 Seo et al. found that the coercive stresses were depen-
dent on the PZT composition with a minimum of �50MPa at the
MPB and increasing to �200MPa at 60% PbTiO3 concentrations.

27

Seo et al. further reported that tetragonal PZT ceramics showed
lower ferroelastic toughening than rhombohedral compositions.14
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In particular, increased lattice distortion increased the coercive stress,
resulting in fewer switched domains and lower toughening.14

Ferroelastic switching and, thus, ferroelastic toughening can be
enhanced by either a large c/a ratio (large distortion) and/or a large
starting population of c-domains available for switching at the crack
tip. This situation is most likely to occur when there is a larger fraction
of c-domains available in the material. It is well known that the Zr/Ti
ratio influences ferroelectric, ferroelastic, and domain populations in
films.29–32 It is likewise known that compressive stress in {100} oriented
perovskite films induces c-domains, while films under tensile stress
induce a-domains.10 Thus, the Zr/Ti content can potentially affect the
degree of ferroelastic switching and ferroelastic strengthening.

Finite fracture mechanics describes two conditions that need to
be fulfilled for crack initiation in brittle materials such as PZT
films.33–35 First, the tensile stress should be larger than the material
tensile strength; second, the increase in the potential energy for finite
crack length increase should exceed the material toughness. The
energy criterion depends on the stored energy before cracking; as the
thickness of the material decreases, more work and energy are needed
to create new surfaces. Coleman et al. showed that for PZT 52/48 films,
the crack initiation stress increased when the film thickness
decreased.17,18 In addition, the characteristic strength of the PZT
film/substrate stack decreased with increasing film thickness; it was
found that the PZT film thickness functions as the initial crack
length that initiates failure of the stack at higher loads.17,18 Whether
this holds true at compositions off the morphotropic phase bound-
ary has not yet been explored.

Additionally, the electrical and mechanical history of PZT affects
the propensity of cracking.17,18,36 Films experience residual thermal
stresses from processing, electrically induced stresses from piezoelec-
tric responses, and applied stress from bending. In many films, the
residual stress state arises from the PZT film cooling down from
the crystallization temperature (Tcryst) to the Curie temperature (TC).
The residual thermal stress, rt, is associated with the thermal expan-
sion coefficient mismatch between the film and the substrate and can
be calculated via

rt ¼

ðTcryst

TC

aCTE; f � aCTE; subð ÞdT

1� vf
Yf

� �
þ 1� vsub

Ysub

� �
4 �

tf
tsub

� �" # ; (1)

where aCTE, v, and Y are the thermal expansion coefficient, Poisson’s
ratio, and Young’s modulus, respectively.18,37 The subscripts f and sub
denote the film and substrate, respectively. If the substrate is signifi-
cantly thicker than the film, Eq. (2) can be simplified to

rt ¼
Yf

1� vf

� �ðTcrystallization

TC

aCTE; f � aCTE; subð ÞdT: (2)

For PZT, the Curie temperature increases with increasing tetra-
gonality (more PbTiO3).

38,39 Thus, as the film cools from the crystalli-
zation temperature to the Curie temperature, the residual film thermal
stress induced by processing decreases with increasing tetragonality
based on Eqs. (1) and (2). PZT films deposited on SiO2/Si substrates
with less residual thermal tensile stress should be able to withstand
higher applied stresses.

This Letter investigates the crack initiation stresses of PZT films
at Ti-rich compositions off the morphotropic phase boundary and
examines the possible mechanistic contributions that affect the crack
behavior of these compositions.

PZT films of 52/48, 40/60, 30/70, and 20/80 compositions were
prepared on four-inch Si wafers with�45nm TiO2 and 100nm of hot
sputtered platinum. PZT was prepared and deposited using the
inverted mixing order (IMO) solution procedure described else-
where.40 The samples were all {001} oriented with a target thickness of
2.0lm. 100nm Pt top electrodes were deposited via sputtering and
patterned via lift off.

The samples were then diced into 1.2 � 1.2 cm2 squares, which
were placed in the ball-on-3-ball (B3B) measurement setup to evaluate
the strength of the entire stack (PZT/Pt/TiO2/SiO2/Si) and crack initia-
tion stress in the PZT films, as described by Coleman et al.9,18 A pre-
load of �10N was employed to hold the sample between the four
balls, and all tests were conducted at room temperature with a com-
pression displacement control of 0.1mm/min on a universal tester
(Instron, MA). At least ten samples were tested to failure per composi-
tion to obtain a Weibull analysis on the strength of the sample stack.
To investigate crack initiation stresses, the samples were loaded at
approximately 30%–95% of the characteristic Weibull strength. Each
new load condition required a new sample. (All samples were only
loaded once.) Afterwards, the surface of PZT was evaluated for cracks
via field emission scanning electron microscopy (FESEM) and dark
field optical microscopy. In areas where cracks were suspected, cross
sections were prepared via focused-ion-beam (FIB) to inspect if cracks
propagated through the PZT film thickness.

The x-ray diffraction (XRD) pattern and field emission scanning
electron microscopy (FESEM) images of different compositions are
shown in Fig. S1 of the supplementary material. They all had similar
Lotgering factors (>95%) and {001} oriented PZT, although a
small amount of pyrochlore was present on the surface for the 40/60
and 30/70 compositions. The films were columnar, such that the
grains are one grain through the film thickness. The lateral grain sizes
were statistically similar for the 52/48 (1956 15nm), 40/60
(1866 36nm), and 30/70 (2186 17nm) compositions. It was found
that the microstructure was significantly different for 20/80 PZT com-
pared to the other compositions (1266 40nm). The crystallization
temperature of PbTiO3 is lower than PbZrO3. Therefore, when the
Zr/Ti ratio increases, the time for PbO loss increases, and vice versa.41

Excess lead is also known to induce more grain nucleation.11,12 Thus,
the 20/80 composition was excluded for this study.

The Weibull modulus and characteristic strength of the stack
were extracted from the B3B data via Weibull analysis using

Pf rð Þ ¼ 1� exp � r
ro

� �m
 !

; (3)

where Pf (r) is the probability of failure at an applied stress (r), m is
the Weibull modulus, and ro is the characteristic Weibull strength
(where the probability of failure below this applied stress is 63%).42,43

The resultant Weibull modulus and characteristic stack strengths
for each composition are given in Fig. 1 and Table I. The MPB compo-
sition was found to have a Weibull modulus and a characteristic
strength of 11–24 and 1091–1183MPa, respectively, at a 95% confi-
dence interval. This agrees with previous studies conducted by
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Coleman et al. showing that MPB PZT films reduce the strength of the
entire stack and increase the Weibull modulus compared to that of the
Si substrate.9,18 In this case, the PZT thickness provides a well-defined
critical flaw size, resulting in a higher Weibull modulus than that of
the substrate.9,18 The cracks were observed near the midpoint of the
sample surface, where the B3B induced the maximum biaxial tensile
stress, agreeing with the literature.9,18

In contrast, theWeibull modulus for the 40/60 and 30/70 compo-
sitions were 4.6–6.2 and 2.5–3.6, respectively, at a 95% confidence
interval. This was much lower than the value for the MPB composi-
tion. Moreover, the characteristic strength for the 40/60 and 30/70
compositions were 1453–1705 and 1355–1807MPa, respectively, at a
95% confidence interval. This was similar to the SiO2/Si substrate (the
Weibull modulus and characteristic strengths of 2.3–2.8 and
1647–2126MPa). That is, as the PZT composition increases in tetra-
gonality, the Weibull moduli and characteristic strength for the entire
stack approach the Weibull moduli and the characteristic strength of
the SiO2/Si substrate itself. A low Weibull modulus indicates a wide
distribution of critical flaw sizes.44–47 Thus, the lowerWeibull modulus
with increasing tetragonal compositions suggests that either (a) the
non-MPB PZT films have cracks with a broad distribution of critical
flaw sizes, such that the film thickness does not act as a characteristic
flaw size, (b) the PZT layer does not crack prior to failure of the SiO2/
Si stack, and/or (c) the small volume fraction of the pyrochlore phase
acts to toughen the film. It is believed that this last possibility is less
likely, as the volume fraction of pyrochlore was low, as is evidenced by
the good orientation through the film; the {100} orientation is typically
degraded when extensive pyrochlore is present.48,49

To evaluate crack initiation stress, specimens with the 40/60 and
30/70 films were loaded at either �30% or �90% of the characteristic

Weibull strength. In neither case were cracks discernable on the PZT
surface. This contrasts with PZT 52/48 films, where cracks were visible
in the electron microscope below the stack strength; these cracks
extended through the PZT thickness, were often hundreds of micro-
meters to mm in length, and served as the flaws that lowered the stack
strength and increased the Weibull modulus.17,18 The absence of
observable pre-cracking (and, hence, the absence of a characteristic
crack length) in the PZT 40/60 and 30/70 compositions is consistent
with the low observed Weibull modulus and the high stack failure
strength. Thus, a wide distribution of flaws in the SiO2/Si substrate
governed failure in samples with tetragonal PZT films.

There are at least two mechanisms that might contribute to the
reduced observation of cracking in the tetragonal films, relative to the
MPB PZT contributions. First, in tetragonal PZT, ferroelastic domain
switching between a and c-domains can act to reduce local stresses
and so could increase the toughness. To ascertain different domain
populations of the films in this study, the {002} XRD peaks of different
compositions were analyzed via Pseudo-Voigt peak fitting in LIPRAS
software.50 The best results were achieved when three peaks were fitted
(corresponding to a-domain, rhombohedral, and c-domain), as shown
in Fig. S2 of the supplementary material. The presence of the rhombo-
hedral phase far from the MPB can arise from composition gradients
during the sol-gel deposition process, the influence of film stress, and/
or inhomogeneity in the sol-gel solution. For example, Ti-rich condi-
tions at the bottom of the layer led to Zr/Ti gradient formation as
PbTiO3-rich compositions provide favorable nucleation in comparison
to PbZrO3-rich ones.12,51,52 Vaxelaire et al. found that the crystallo-
graphic gradient correlated with Zr/Ti chemical gradients; thus, the
entire PZT film may not be at the MPB but can instead alternate
between rhombohedral (Zr-rich zones) and tetragonal (Ti-rich
zones).53

To verify the presence of concentration gradients, scanning trans-
mission electron microscopy (STEM) was used in conjunction with
energy-dispersive x-ray spectroscopy (EDS). The samples were pre-
pared creating a cross section with a Helios 660 and a Scios 2 focused
ion beam (FIB)/SEM. The ion beam deposition and milling are per-
formed at 30 kV with currents as high as 30 nA for trenching with the
exception of the final polishing step at 5 kV. The cross-sectional TEM
specimens were observed by the FEI Titan3 G2 double aberration-
corrected microscope at 300 kV. The STEM images were collected
using a high angle annular dark field (HAADF), which had a collec-
tion angle of 52–253 mrad. EDS maps and line scans were collected by
using a SuperX EDS system under the STEM mode. The results are
shown in Fig. 2. The PZT 52/48 composition had Zr gradients that
fluctuated from 45 to 60mol. % at the 25th and 75th percentile range
from the box-and-whisker plots shown in Fig. 2(d); this is comparable

FIG. 1. Probability of failure vs failure stress for 2-lm thick PZT films with different
Zr/Ti ratios on Pt/TiO2/SiO2/Si substrates using B3B biaxial loading conditions.

TABLE I. Characteristic load, characteristic strength, and Weibull modulus for Various PZT compositions on the SiO2/Si substrate and the SiO2/Si substrate.
17,18 Brackets indi-

cate 95% confidence intervals.

PZT composition Characteristic load (N) Characteristic strength (MPa) Weibull modulus Time to failure (s)

52/48 130 [125–135] 1137 [1091–1183] 17 [11–24] 626 12
40/60 180 [166–195] 1579 [1453–1705] 6.7 [4.6–8.2] 716 10
30/70 181 [155–207] 1581 [1355–1807] 3.0 [2.5–3.6] 756 31
SiO2/Si 216 [189–244] 1887 [1647–2126] 2.5 [2.3–2.8] N/A
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to reported composition fluctuations in other PZT sol gel solutions on
Pt/TiO2/SiO2/Si substrates.

52,54 The interquartile range for the mole
fraction Zr was similar for all compositions 16.1, 16.1, and 15.2mol. %
for 30/70, 40/60, and 52/48 compositions, respectively. The interquar-
tile range for the mole fraction of Pb was also similar for all composi-
tions (20, 16, and 16mol. % for 30/70, 40/60, and 52/48 compositions,
respectively). The interquartile range for the mole fraction of Ti for
30/70, 40/60, and 52/48 was 23.0, 15.8, and 15.7mol. %, respectively. It
is believed that one cause of the observed rhombohedral phase is these
concentration gradients. The presence of mechanical strains, local
strains, or a shift in the MPB due to non-stoichiometry and the pres-
ence of lead on the B-site55,56 are additional factors that could induce a
rhombohedral phase off the MPB.

The lattice parameters and area underneath the fitted peaks were
extracted from the Pseudo-Voigt fits via MatLab and are given in
Table S1 with Fig. S3 of the supplementary material comparing the

extracted lattice parameters to those reported by Shirane and Suzuki.57

When the average film compositions were more Ti-rich, the rhombo-
hedral phase fraction decreased and the a-domain volume fraction
increased. Furthermore, the concentration of c-domains increased
with increasing tetragonality. It is noted that the compositional gra-
dients will presumably also introduce strain gradients. The role of
these gradients are cracking is unknown and difficult to quantify, as
such gradients may also influence the local domain structure.

The second potential contribution to a higher characteristic
strength for tetragonal films is that they have slightly lower residual
stresses than MPB films and can, thus, withstand higher loading
stresses, increasing their characteristic strength. To estimate the biaxial
residual thermal stress, phenomenological parameters were inserted
into Eq. (1); the data used in the calculations are given in Table S2 of
the supplementary material. It was found that the thermal stresses in
the film are tensile for films on Si substrates and did not significantly

FIG. 2. TEM line scans of PZT compositions: (a) 52/48, (b) 40/60, and (c) 30/70. The films were acquired such that the position is perpendicular to the substrate. Position 0 is
the film surface. The extrema correspond to each of the crystallization layers with high Ti and Pb concentrations near the bottom of each crystallized layer and high Zr contents
at the top of each crystallized layer. (d) Box-and-whisker plots of the gradients of Zr, Pb, and Ti for each composition.
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vary between compositions based on phenomenological calculations;
the thermal stresses were 82.0, 87.2, and 79.9MPa for the 52/48, 40/60,
and 30/70 compositions, respectively. It should be noted that this cal-
culation only addresses the thermal strain on cooling from the crystal-
lization temperature to TC and does not account for any stress
relaxation associated with development of the domain state on cooling
through TC. In addition, there are numerous papers showing reason-
able agreement between calculated thermal stresses and stresses mea-
sured via wafer bowing experiments.5,58–60

In conclusion, {100} oriented PZT films with Zr/Ti ratios of
52/48, 40/60, 30/70, and 20/80 were fabricated via the IMO sol-gel
method to investigate their respective cracking behaviors. The PZT
52/48 behavior was in good agreement with the work by Coleman
et al.9 However, for more tetragonal films, the characteristic strength
increased while the Weibull modulus decreased to values comparable
to that of the Si substrate. The residual thermal tensile stress accumu-
lated due to the thermal expansion differences did not significantly
vary between average 52/48 and 30/70 compositions; it is unknown if
there was a difference in the relaxation of the stresses due to domain
formation below the Curie temperature. Thus, it is speculated that the
higher stack strengths are associated with increased toughening due to
either ferroelastic switching or phase switching in samples with more
Ti-rich PZT. Based on peak fitting, the PZT films had a mixture of the
tetragonal a-domain, tetragonal c-domain, and rhombohedral phases
for all compositions; the rhombohedral phase decreased while both
tetragonal a and c-domain fractions increased with increasing tetra-
gonality. TEM confirmed the existence of Zr/Ti concentration gra-
dients in all films. This likely accounts for the rhombohedral peak
found in the XRD peak fitting.

Future experiments should include local in situ XRD measure-
ments of the PZT films pre- and post-cracking to ascertain a change in
the crystal structure from the initial state. It is noted that ferroelastic
domain switching is widely reported to be modest in clamped PZT
films on a silicon substrate,5,61–65 so that it is anticipated that relatively
small macroscopic changes in the domain state will occur over large
process zones. Local measurements would allow this hypothesis to be
checked as well as allow the determination of the zone of ferroelastic
switching around a crack front to be determined.

From an acoustic device perspective, the maximum displacement
is desired for acoustic sources. To maximize the displacement, a maxi-
mum lateral strain or applied electric field is needed. In scenarios
where the PZT compositions do not crack, PZT 52/48 would be ideal
due to its large piezoelectric coefficient. Practically, however, the PZT
samples do crack in some device configurations (e.g., depending on
the release state, clamping conditions, and PZT film thickness). Thus,
off-MPB compositions are potentially of interest in actuators due to
the reduced propensity for cracking, albeit with a trade-off associated
with the need to apply higher electric fields.

See the supplementary material for XRD/FESEM characterization
of the grown films, pseudo-Voigt fits using LIPRAS software and its
resultant 2� positions and area under the fitted curves, and finally, the
mechanical properties used for estimating residual thermal stress in
Eq. (1).

The authors would like to thank Trevor Clark and Ke Wang
for their help on TEM sample preparation and imaging.
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