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1. Introduction

Ferroelectric materials exhibit a broad 
spectrum of non-linear behaviors in 
response to frequency-dependent electric 
and elastic stimuli. These behaviors are 
vital for applications of ferroelectric mate-
rials – as much as 75% of the observed 
piezoelectric response in lead zirconate 
titanate ceramics is associated with non-
linear extrinsic contributions.[1–11] These 
nonlinearities can both enable new device 
concepts and limit the applicability of 
extant ones.[12] Non-linear behaviors are 
strongly tied to the physics of ferroelectric 
materials; intrinsic nonlinearities produce 
a field-dependence in properties such as 
the dielectric susceptibility, even in single 
domain single crystals.[11,13,14] Practically, 
however, extrinsic responses, typically 
associated with the motion of domain 
walls and phase boundaries, dominate 
macroscopic nonlinearities in ferroelectric 
materials, producing emergent behaviors 
from mesoscopic to macroscopic length 
scales.[15] As such, non-linear dynamics 
have been used to explore ceramics,[16] 

An automated experiment in multimodal imaging to probe structural, 
chemical, and functional behaviors in complex materials and elucidate the 
dominant physical mechanisms that control device function is developed and 
implemented. Here, the emergence of non-linear electromechanical responses 
in piezoresponse force microscopy (PFM) is explored. Non-linear responses 
in PFM can originate from multiple mechanisms, including intrinsic mate-
rial responses often controlled by domain structure, surface topography 
that affects the mechanical phenomena at the tip-surface junction, and the 
presence of surface contaminants. Using an automated experiment to probe 
the origins of non-linear behavior in ferroelectric lead titanate (PTO) and fer-
roelectric Al0.93B0.07N films, it is found that PTO shows asymmetric nonlinear 
behavior across a/c domain walls and a broadened high nonlinear response 
region around c/c domain walls. In contrast, for Al0.93B0.07N, well-poled 
regions show high linear piezoelectric responses, when paired with low non-
linear responses regions that are multidomain show low linear responses and 
high nonlinear responses. It is shown that formulating dissimilar exploration 
strategies in deep kernel learning as alternative hypotheses allows for estab-
lishing the preponderant physical mechanisms behind the non-linear behav-
iors, suggesting that automated experiments can potentially discern between 
competing physical mechanisms. This technique can also be extended to 
electron, probe, and chemical imaging.
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single crystals,[13,17,18] and quantum phase transitions,[19] 
addressing long-standing issues in the physics of ferroelectric 
materials. Similarly, the coupling between piezoelectric and die-
lectric phenomena leads to intertwined non-linear responses.[20]

Recently, it has been shown that scanning probe microscopy 
(SPM) can be used to detect the non-linear electromechanical 
responses in point spectroscopy modes.[21] This approach was 
extended to probe the ac bias dependence of piezoresponse 
via hyperspectral measurements and local non-Rayleigh 
responses.[22–24] Local Raleigh-like[25] responses have been 
used to explore the effect of single grain boundaries on wall 
motion,[26–28] and establish the local relationships between non-
linearity and minor hysteresis loops.[29]

However, in local measurements, non-linear responses can 
originate from various phenomena, including intrinsic dielec-
tric and piezoelectric tunability, domain wall dynamics, elec-
trostatic interactions,[30,31] and elastic non-linearities at the tip-
surface junction.[25] These effects are coupled at the tip-surface 
junction and cannot be differentiated by the bias dependence of 
the local PFM signal alone. Similarly, the contact area, elastic 
softening, and indentation modulus cannot be separated based 
solely on resonant frequency shift measurements, and hence 
changes in resonance frequency can stem both from variations 
in Young’s modulus due to the elastic softening and changes in 
surface topography.[32–34] However, it can be argued that insight 
into these mechanisms can be obtained based on statistical data 
analyses of the spatial features in the data, building correlations 
between topography, resonance frequency shifts, polarization 
gradients, and detected non-linear responses.

Traditionally, such correlations have been built based on the 
analysis of spectroscopic data sets acquired on a dense square 
grid of points.[25] In this case, the high-resolution structural and 
functional images can be co-registered with the hyperspectral 
images containing the bias dependence of the response. This 
approach is time-consuming. More importantly, it necessitates 
sampling all the correlations present in the data set equally 
and the small number of the regions with interesting behav-
iors (e.g., large or small responses) can remain unnoticed. As a 
result, identification of the relevant physical mechanisms from 
the correlative data is hindered.

An alternative approach is that of the automated experiment, 
uncovering the correlations between local structural and func-
tional properties following a specific reward (e.g., curiosity or 
discovery of specific behaviors). Previously, this approach was 
used for automated PFM experiments based on a combina-
tion of deep kernel learning (DKL) and a physics-based reward 
function.[35,36] The DKL model contains a neural network and 
a Gaussian process layer. The neural network projects the 
structural data (images) into the low dimensional latent space, 
which serves as an input space for the Gaussian process regres-
sion. The latter relates the (reduced) structural features to the 
target property encoded in the spectroscopic data. In doing so, 
the DKL establishes a relationship between the structural data 
imaging representing local structures and the spectroscopic data 
representing local functionality. In that work, a single-shot DKL 
model learned the correlation between the structural descriptor 
(e.g., a patch of topographic or PFM amplitude image) and the 
response of the local material (hysteresis loop). The exploration 
of the image plane was controlled by the reward function (sca-

larizer), that specified which aspect of the predicted response is 
of interest. As a result, it was possible to explore which element 
of the domain structure is associated with large hysteresis loop 
areas in the on-field and off-field regimes.

Here, this concept is extended to explore the role of multiple 
possible channels in the evolution of piezoelectric nonlinearity 
in PbTiO3 (PTO) and Al0.93B0.07N. Deep kernel learning is 
applied to band excitation amplitude spectroscopy (BEAM) to 
explore the correlation of nonlinearity and different band excita-
tion PFM (BEPFM) image channels, that is, topography, ampli-
tude, phase, and resonance frequency. PTO and Al0.93B0.07N fer-
roelectric films were used as model systems with very different 
levels of piezoelectric nonlinearity.

2. Baseline Characterization of Films

A PTO thin film was grown via metalorganic chemical vapor 
deposition (MOCVD) with a SrRuO3 (SRO) conducting buffer 
layer on (001) KTaO3 (KTO) substrates, as reported by Morioka 
et al.[37] Previous studies on this film show (1) the causal relation-
ships between various channels of the BEPFM data,[38] 2) the cor-
relation between local domain structure and properties encoded 
in the polarization-electric field hysteresis.[39,40] Figure 1a shows 
the BEPFM data of this PTO thin film, where the amplitude 
image indicates the polarization magnitude and the phase 
image indicates the polarization orientation. Both out-of-plane c 
domains and in-plane a domains are indicated in the BEPFM 
data. In addition, the ferroelastic domains are visible in topog-
raphy images due to the different surface inclinations between 
adjacent domains. As expected, variations in the elastic stiffness 
between adjacent domains and topographic variations produced 
a rich structure in the resonance frequency shift image.

A second exemplar was a 205  nm thick Pt/Al0.93B0.07N/W 
capacitor on a sapphire substrate. The Al0.93B0.07N film prepa-
ration is described in the Methods section. In this case, the 
field across the device structure is uniform, and the probe 
acts as a sensor of mechanical displacement induced by the 
piezoelectric effect. This sample was originally woken up, and 
left in a state in which some regions were left largely unipolar, 
and other regions had both up and down domains throughout 
the film thickness. Figure 1b shows the BEPFM results of this 
Pt/Al0.93B0.07N/W capacitor. Amplitude, phase, and frequency 
images show domains with a lateral scale of hundreds of 
nanometers with variable piezoresponses. Imaging, domain 
writing, hysteresis loop measurements, and electric field 
cycling on the macroscopic device[41–47] were recorded.

3. Characterization of Electromechanical 
Nonlinearites
Following baseline characterization, the non-linear electrome-
chanical behavior in these materials was studied. The local 
electromechanical response at each spatial grid location was 
measured via band excitation[48–50] as a function of ac bias.[51–53] 
Typically, the ac bias amplitude was swept following a triangular 
waveform; data from both upwards and downward branches 
were recorded. The data set represents the piezoresponse signal 
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(PR) as a function of Vac amplitude and frequency w at each 
spatial location (x, y), PR (Vac, w, x, y). In classical BE analysis, 
the frequency dependence of the signal is analyzed as a har-
monic oscillator to yield the amplitude, resonance frequency, 
wr, Q-factor, and phase, φ. The data set is analyzed using mul-
tivariate methods to study components and loading maps,[54–57] 
or disentangled representation via different auto-encoders.[58–61] 
Similarly, correlative structure-property relationships, for 
example, the correlation between domain structure and polari-
zation dynamics, were established via encoder-decoder models 
and dual auto-encoders.[62,63]

Alternatively, the local spectral component can be fitted to a 
chosen functional form if the physical mechanisms behind the 
responses are known or hypothesized. For non-linearity measure-
ments, the natural functional form is the polynomial expansion:

3 2A V aV bV cVac ac ac ac( ) = + + � (1)

where A(Vac) is the detected response amplitude and Vac is the 
excitation ac voltage. In this expansion, a and b are higher-order 
terms representing non-linearities, and c is the linear piezo-
electric response. The mechanisms behind bulk non-linear 
responses in ferroelectrics were explored by Damjanovic,[5,6,64] 
Mokry,[65,66] and others.[8,25,67,68] As discussed above, the nonlin-
earity can be intrinsic; however, in most cases, the nonlineari-
ties in ferroelectrics arise predominantly from the motion of 
domain walls and/or phase boundaries.

When the measurements are performed locally via PFM, 
these responses can, in principle, be correlated with individual 
domain structure elements. However, in PFM, additional 
nonlinearities emerge due to the responses at the tip-surface 
junctions and non-linear cantilever dynamics. They are exac-
erbated by surface topography and contaminants that affect 
local mechanical properties and electrical contact conditions. 
Previously, the origins of non-linear behaviors were explored 
using post-acquisition data analysis, as reported in ref. [25], 

where the data consists of a high-resolution microstructural 
image and the hyperspectral images of bias-dependence of the 
response. In addition to the time-consuming data acquisition 
process, this approach is limited to a few regions of interest, 
the sampling limitations of the rectangular grids, and meas-
urement latencies, which collects statistical information from 
known objects of interest, rather than uncovering structure-
property relationships. More importantly, this approach equally 
samples all the correlations present in the data and the regions 
with interesting behaviors can remain unnoticed; consequently, 
the relevant physical mechanisms can potentially be missed. 
Alternatively, Kelley,[69] Liu,[70] and Volpe[71] have shown that in 
combination, computer vision and automated experiments can 
select locations for in-depth spectroscopic studies based on a 
priori criteria in SPM. However, this approach relies on the a 
priori known objects of interest, rather than the discovery of 
microstructural elements having specific behaviors.

4. Automated Experiments

Previously, automated experiment (AE) workflows based on 
DKL were implemented on the microscope.[39,72,73] In DKL-AE,  
the spectroscopic measurements are first performed at several 
random locations, and the DKL builds correlative relationships 
between the structure images taken around measured locations 
and the corresponding spectroscopic responses; the predicted 
responses and uncertainties are used to determine the acquisition 
function for Bayesian optimization (or active learning); the largest 
measurement defines the next spectroscopic measurement loca-
tion. DKL’s acquisition function can either minimize uncertainty 
(pure exploration) or follow certain criteria (exploitation). For 
example, this strategy was used to discover the edge plasmons 
in Electron Energy Loss Spectroscopy[72] and 4D scanning tran-
simission electron microscopy86 and to establish the relationship 
between domain structure and minor hysteresis loops in PFM.[39]

Small 2022, 18, 2204130

Figure 1.  BEPFM topography, amplitude, phase, and resonance frequency results of a) PbTiO3 thin film and b) Pt/Al0.93B0.07N/W capacitor.
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Here the goal is to explore whether the mechanism behind 
the nonlinear electromechanical response can be discovered 
via DKL-AE in multimodal imaging by using predictability[74,75] 
to identify physical mechanisms via active learning. Here the 
relationships (or lack thereof) between piezoelectric non-
linearity and individual data channels including topography, 
resonance frequency shift, and the magnitude of the piezore-
sponse signal were specifically targeted. Accurate predictions[74] 
of functional responses correlate a material’s function with the 
selected imaging channel. If DKL fails to establish a relation-
ship between the selected channel and the response of interest, 
the two are unrelated. However, if a particular channel has the 
strongest predictive power for a specific parameter, this sug-
gests a causal link between the two. Here this approach was 
demonstrated using pre-acquired data and implemented in the 
active learning framework during the automated experiment.

To illustrate the principle of the DKL-AE, DKL was imple-
mented using pre-acquired high-density band excitation vari-
able excitation amplitude measurement (BEAM) imaging data-
sets of the PTO thin film and the Pt/Al0.93B0.07N/W capacitor, 
which provided the “known” ground truth image. Here, the 
piezoresponse resulting from applying a probing AC voltage 

(where the AC bias range depends on the material investigated) 
through the band-excitation method is acquired within a pre-
defined grid, thus at each individual point, the spectroscopic 
data of piezoresponse amplitude versus AC voltage is avail-
able. Figures 2a–c show a 100 ×  100 grid of BEAM data gener-
ated from the PTO film with bipolar AC excitation amplitude 
(≈350–400  kHz) ranging from 1–3  V (well below the coercive 
voltage of 10  V). To differentiate the effects of material non-
linearity and tip-surface junction nonlinearity, it is noted that 
the two should have different dependencies on the frequency 
sweep direction. While the material nonlinearity should be 
independent of sweep direction, nonlinear interactions in the 
junction will appear as hysteresis in the response curve even for 
the simplest cubic nonlinearities. In this work, the phase offset 
in the BEAM measurement was adjusted to minimize the tip-
surface junction nonlinearities by minimizing the hysteresis as 
a function of the frequency sweep direction. BEAM measure-
ments of the PTO and Pt/Al0.93B0.07N/W capacitors were carried 
out in ambient conditions.

Figure  2a shows the amplitude, phase, and frequency 
images across all AC voltages at each grid. Figure  2b shows 
two examples of piezoresponse amplitude versus AC voltage 

Small 2022, 18, 2204130

Figure 2.  BEAM results of a–c) PTO/SRO/KTO sample and d–f) Pt/Al0.93B0.07N/W capacitor. a,d) Averaged amplitude, phase, and frequency maps 
over all Vac; b,e) two examples of piezoresponse amplitude versus Vac data with fitted curves from the location labeled on (a) and (d), respectively; 
c,f) three-parameter (coefficient a, b, and c) maps resulted from fitting. The unit of coefficients a, b, and c are nm V−1, nm V−2, and nm V−3, respectively.
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curves from the locations shown in Figure 2a. For this film, the 
displacement as a function of the voltage curve was concave 
up. These curves were fitted to Equation  (1) to produce three 
parameters: the cubic a, quadratic b, and linear c coefficients. 
Exemplary fits and fitting parameters are shown in Figure 2b. 
Curve 1, from the c-domain, shows a larger linear response 
(linear coefficient is 1.37 × 10−1 nm  V−1) than curve 2 (linear 
coefficient is 7 × 10−3 nm V−1), from the a-domain. The A(Vac) 
at each grid was fitted using Equation  (1) in order to map the 
three parameters; this allows the analysis of the relationship 
between domain structures and A(Vac) of the system. Notably, 
grid points for in-plane a-domains have low out-of-plane pie-
zoresponses, producing low or scattered signals in BEAM  
measurements. Figure  2c shows the maps of three 
parameters a, b, and c. As expected, the out-of-plane c-domains 
have a larger linear component with a linear coefficient of 
around 0.4 nm V−1 in contrast, the in-plane a-domains have a 
very small linear coefficient ≈0 nm V−1. The c/c domain walls 
have relatively smaller linear (≈0 nm V−1) and cubic components 
(≈0  nm  V−3) but larger quadratic components (≈0.4  nm  V−2). 
The a/c domain walls have a relatively larger cubic component 
(≈0.1  nm  V−3) but smaller linear (≈0  nm  V−1) and quadratic 
components (≈0 nm V−2).

Figure 2d–f shows the BEAM results of a Pt/Al0.93B0.07N/W 
capacitor. As described above, the sample was woken up into 
the ferroelectric state; some regions were left largely unipolar, 
and other regions had both up and down domains throughout 
the film thickness. This BEAM data is fitted as Equation (1) to 
obtain three parameter maps. The linear c map appears to have 
a weak correlation between amplitude and frequency. It is likely 
that the high linear piezoresponse regions correspond to the 
unipolar regions in the sample.

With the ground truth behavior established, DKL was 
employed to elucidate structure-property relationships between 

the structural images (amplitude, phase, and frequency) and 
nonlinearity maps. DKL represents a hybrid of deep neural 
networks and Gaussian processes.[76] The neural network 
g parametrized by weights w embeds the high-dimensional 
structural image data X into the latent space where a standard 
GP kernel kbase with hyperparameters θ operates. The corre-
sponding regression model for a response variable y (here, the 
fit parameters in Equation (1)) can be written using a standard 
Gaussian process formulation as:

Multivariate Normal 0, ,y K x xDKL( )( )∼ ′ � (2a)

, | , ( | ), | |θ θ( )( ) ( )′ = ′K x x w k g x w g x wDKL base � (2b)

The KDKL is referred to as a “deep kernel” whose parameters 
(neural network weights and base kernel hyperparameters) are 
optimized with respect to the marginal likelihood resulting 
in an end-to-end learning scheme. Hence, the learned latent 
representation encodes the structure-property relationships 
and is different from standard dimensionality reduction tech-
niques (such as principal component analysis or non-negative 
matrix factorization) where the ‘reduction’ of the high-dimen-
sional image data is not conditioned on any observed physical 
functionality.

At the prediction stage, the trained DKL model produces 
the expected function value and associated uncertainty at new 
inputs X*. These can be combined into the standard acquisition 
function used in active learning and Bayesian optimization to 
derive the next measurement point.

DKL was further implemented on the pre-acquired amplitude 
spectroscopy data set (i.e., ground truth data) of a model PTO 
film and a Pt/Al0.93B0.07N/W capacitor sample. Figures S1 and 
S2, Supporting Information show the results of DKL analyses 

Small 2022, 18, 2204130

Figure 3.  A schematic of the DKL AE platform components. The DKL AE platform includes an Oxford Instrument Asylum Cypher, an in house LabView-
based National Instruments hardware (LabView-NI), a Field Programmable Gate Array (FPGA), one computer for measurement control, and one com-
puter with a GPU to accelerate DKL analysis. In DKL AE measurements, the FPGA controls the tip via a signal to the Asylum Cypher; the LabView-NI 
generates the BEAM waveform and acquires data; the FPGA sends a trigger to LabView-NI for BEAM measurement after moving the tip to the desired 
position. Real-time data transfer between the analysis laptop and the measurement computer is enabled through a LAN cable.
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with 20% random sampling measurement points as training 
data, detailed analyses and discussion are in the Supporting 
Information. Notably, the uncertainty data of Pt/Al0.93B0.07N/W 
capacitor regarding the linear coefficient c parameter in Figure 
S2, Supporting Information indicates an interesting structure 
around the high/low piezoresponse boundary.

DKL can also be implemented as an active learning method, 
where the DKL acquisition function is used to determine the 
next exploration point to search for specific physical signa-
tures. The latter is defined by an operator-specified scalarizer 
function which uses the predicted response and its uncertainty 
as input and converts it to a measure of physical interest. For 
example, the scalarizer can be chosen as a cubic coefficient of 
nonlinearity, quadratic coefficient, or maximal uncertainty of 

the prediction. It is important to note that the pathway that the 
automated experiment will take depends on a chosen scalarizer, 
much like in human-driven experiments the specific experi-
ment goal determines the sequence of selected measurement 
points. Prior to automated experiments on the microscope, 
DKL automated experiments were simulated with the pre-
acquired data; results are shown in Figures S3 and S4, Sup-
porting Information.

Then, DKL-AE was used on the operating microscope. To 
implement DKL-AE, the Oxford Instrument Asylum Cypher 
was combined with in-house LabView National Instruments 
hardware (LabView-NI) and field programmable gate arrays 
(FPGA). Figure 3 shows a schematic of the system and the data 
generated. The FPGA controlled the tip position by transferring 

Small 2022, 18, 2204130

Figure 4.  DKL-BEAM results with BEPFM amplitude as the structure image. In the DKL-BEAM measurement, a BEPFM measurement is first performed 
to acquire the structure images, for example, the amplitude image. Then, four acquisition functions based on the cubic coefficient a, quadratic coef-
ficient b, linear coefficient c, and the ratio of a and b were used to guide the DKL exploration. a) PTO thin film BEPFM amplitude image and b–e) DKL 
predictions according to the exploration with acquisition functions based on the cubic coefficient a, quadratic coefficient b, linear coefficient c, and 
the ratio of a and b. f) The Pt/Al0.93B0.07N/W capacitor BEPFM amplitude image. g–j) DKL predictions according to the exploration with acquisition 
functions based on the cubic coefficient a, quadratic coefficient b, linear coefficient c, and the ratio of a and b.
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the positions as electrical signals and sending them to the 
Asylum Cypher. LabView-NI generated a BEAM waveform and 
acquired data after receiving a trigger from the FPGA. The 
DKL analyses were performed on a laptop with a GeForce RTX 
(real time ray tracing) 3060 GPU (graphics processing unit) 
card. The data transfer between the analysis laptop and meas-
urement computer was done with a local area network cable. 
First, BEPFM was performed to acquire structure images (i.e., 
amplitude, frequency, topography), in order to generate struc-
ture image patches used as a feature set for DKL. The first 
BEAM spectrum position was randomly generated by Python. 
Then, the DKL model analyzed the pre-defined parameter of 
the BEAM spectrum and the structure image patch. The DKL 
was trained for 200 iterations and chose the next location for 
measurement based on the pre-defined acquisition function, 
as described below. This location was conveyed to FPGA via 
Python code which drove the tip to the new location and trig-
gered LabView-NI for the next BEAM measurement. Then, 
the process was repeated. It is worth noting the novelty of this 
workflow compared to our previous work;[35] here real-time data 
transfer between two computers enables the GPU to accelerate 
the machine learning process.

PTO and Al0.93B0.07N thin films were investigated via DKL-
AE. The results are shown in Figure 4. The first row shows the 
topography, amplitude, and frequency in a 256 × 256 grid, which 
was used to generate grid image patches for DKL. The acquisi-
tion function (AF) was derived from four parameters, cubic a, 
quadratic b, linear c, and the ratio of a and b (a/b). For both types 
of ferroelectric films, three structure images and four acquisi-
tion functions in DKL-AE were used, thus 24 (2 × 3 × 4) DKL-AE 
measurements were performed. Each DKL-AE continued for 200 

steps. Figure 4 shows the DKL predictions of the corresponding 
parameters after 200 steps. The detailed DKL discovery pro-
cesses are shown in Supplementary Information as videos of the 
acquisition function images with labeled exploration points.

In the PTO thin film, the amplitude image-based DKL-AE 
results (Figure 4a–e) both the linear component c and the quad-
ratic component b showed a higher response on one side and 
a lower response on the other side of the a/c domain walls. 
In [001] tetragonal perovskite films such as PbTiO3, the a/c 
domain walls generally lie along [101] planes, and so are tilted 
at 45° with respect to the sample surface. The amplitude con-
trast across the domain wall is thus a function of the volume 
of material probed and the number of a- and c-domains in that 
volume. Near c/c domain walls, there is a larger quadratic com-
ponent b (Figure  4c); this region is slightly broader than the 
image of the domain walls themselves. Topography and fre-
quency image-based DKL-AE results are shown in Figure S5, 
Supporting Information, which indicated features related to 
surface geometry and a/c domains.

In a Pt/Al0.93B0.07N/W capacitor, both topography and fre-
quency (Figure S6, Supporting Information) based results 
show no obvious spatial variation, likely because topography 
and frequency responses originate from the top electrode Pt 
layer while the piezoresponse originates from the Al0.93B0.07N 
layer. The results based on the amplitude (Figure  4f–j) indi-
cate lower cubic a and quadratic b in the high piezoresponse 
domains, and intermediate cubic a and quadratic b in the 
high/low piezoresponse boundary. The displacement – voltage 
curves were very slightly concave down. Most interestingly, the 
linear c shows a sharp contrast across the high/low piezore-
sponse boundary—the linear coefficient c is higher on the low 

Small 2022, 18, 2204130

Figure 5.  Experimental DKL navigated exploration points in DKL-BEAM measurements. a–d Exploration points of PTO thin film results with acquisi-
tion functions as cubic a, quadratic b, linear c, and a/b, respectively. e–h) Exploration points in Pt/Al0.93B0.07N/W capacitor results with acquisition 
functions as cubic a, quadratic b, linear c, and a/b, respectively. The corresponding structure images used in the explorations are indicated via 
colors.
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piezoresponse side but lower on the higher piezoresponse side. 
A hypothesis that would be consistent with the observations 
for the Al0.93B0.07N layer is the appearance of wedge domains 
having opposite polarity of the matrix, which leads to a lower 
volume thickness-averaged piezoelectric response, but a higher 
activity level under a large signal drive field.

Figure  5 shows a comparison of exploration points when 
different structure images were used. Notably, most explora-
tion points locate near a/c domain walls in the PTO thin film 
when the acquisition function is the quadratic coefficient b 
(Figure 5b) regardless of what structure image is used. In addi-
tion, most exploration points are located near c/c domain walls 
in the PTO film when the acquisition function is the linear 
coefficient c (Figure  5c) in all cases. Figure  5e–h shows Pt/
Al0.93B0.07N/W results. Exploration points based on topography 
and frequency were mostly scattered, while the exploration 
points based on amplitude were mainly located around high/
low piezoresponse domain boundaries.

5. Conclusions

Automated band excitation variational amplitude microscopy 
(BEAM) based on deep kernel learning (DKL) was implemented 
to explore the local nonlinear electromechanical response in 
a model ferroelectric PTO film and a Pt/Al0.93B0.07N/W capac-
itor. DKL-BEAM explorations suggested asymmetric nonlinear 
behavior across a/c domain walls and a broadened high non-
linear response region around c/c domain walls in the model 
PTO film. DKL-BEAM explorations indicate that the highest 
linear piezoelectric response was coupled with the lowest non-
linear response in the Pt/Al0.93B0.07N/W capacitor. Formulating 
dissimilar exploration strategies in deep kernel learning as 
alternative hypotheses established the preponderant physical 
mechanisms behind non-linear behaviors. Automated experi-
ments show potential in multimodal imaging to discern com-
peting physical mechanisms and can be used in electron, 
probe, and chemical imaging.

6. Experimental Section
Data Analysis: The DKL methodologies were established in Jupyter 

notebooks and are available from https://github.com/yongtaoliu/
DKL-Nonlinearity.[77]

PTO Sample: The PTO film was grown on a KTaO3 substrate with a 
SrRuO3 bottom electrode by chemical vapor deposition

AlBN Sample: Pt/Al0.93B0.07N/W film was grown on (001) sapphire 
substrate by using pulsed DC sputtering, with (110) W bottom and Pt 
top electrodes that were both deposited by DC magnetron sputtering.

BEPFM and BEAM Measurements: The PFM was performed using an 
Oxford Instrument Asylum Research Cypher microscope with Budget 
Sensor Multi75E-G Cr/Pt coated AFM probes (≈3 N m−1). Band excitation 
data were acquired with a National Instruments DAQ card and operated 
with a LabView framework.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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