Topological Valleytronics in Bilayer Graphene

Jun Zhu

Department of Physics
The Pennsylvania State University

2DCC Webinar, Nov 7, 2017
Electronic degrees of freedom

- **Charge**
 - electric field, magnet field

- **Spin**
 - magnetic field, spin-orbit coupling

- **Valley**
 - Valley-(controlled) (elec)tronics
Two-dimensional layered materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Graphene and bilayer graphene</th>
<th>hBN</th>
<th>MoS$_2$</th>
<th>WSe$_2$</th>
<th>Fluorographene</th>
</tr>
</thead>
</table>

- h-BN, graphene fluoride, MoS$_2$, WSe$_2$, graphene, NbSe$_2$,
- Germanene, Silicene, Stanene, hexagonal GaN ...
h-BN/bilayer graphene/h-BN

- High sample quality
- Sophisticated nanostructures
Crystal structure of conventional semiconductor: Si

Multi-valleys but they are equivalent.
Monolayer graphene: two inequivalent valleys

The unusual band structure of a single layer of graphene, shown in Fig. 3, has been known for 60 years. The Dirac points, illustrated by C. Jozsa and B. J. van Wees, are connected by reciprocal-lattice vectors, so they are equivalent. Likewise, the three corners marked by a black dot are equivalent. The two components of the wave vector are denoted by \(k_x \) and \(k_y \). The two-dimensional Brillouin zone is indicated. The conduction band points \(K \) and \(K' \) are the Dirac points. Illustration by C. Jozsa and B. J. van Wees.

The energy excitations \(E(k) = \pm v_F |k| \) have a conical dependence on \(k \), with the Fermi velocity \(v_F \) of \(10^6 \) m/s proportional to \(k^2 \) on the honeycomb lattice. This two-dimensional Dirac Hamiltonian is expressed in terms of the two-component spinor \(\psi(k) \) as

\[
\begin{align*}
H(k) &= \left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array} \right) \cdot \left(\begin{array}{c}
k_x + ik_y \\
k_x - ik_y
\end{array} \right) \\
&= \frac{1}{2} v_F \left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array} \right) \cdot \left(\begin{array}{c}
k_x + ik_y \\
k_x - ik_y
\end{array} \right)
\end{align*}
\]

The energy \(E(k) = \pm \frac{1}{2} v_F |k| \) is proportional to \(k^2 \). The two components of the wave vector are denoted by \(k_x \) and \(k_y \). The two-dimensional Brillouin zone is indicated. The conduction band points \(K \) and \(K' \) are the Dirac points. Illustration by C. Jozsa and B. J. van Wees.

The unusual band structure of a single layer of graphene, shown in Fig. 3, has been known for 60 years. The Dirac points, illustrated by C. Jozsa and B. J. van Wees, are connected by reciprocal-lattice vectors, so they are equivalent. Likewise, the three corners marked by a black dot are equivalent. The two components of the wave vector are denoted by \(k_x \) and \(k_y \). The two-dimensional Brillouin zone is indicated. The conduction band points \(K \) and \(K' \) are the Dirac points. Illustration by C. Jozsa and B. J. van Wees.
Sublattice inversion symmetry

\[\hat{H} = v_F \left(\xi p_x \hat{\sigma}_x + p_y \hat{\sigma}_y \right) \]

\[\xi = \pm 1 \text{ for K and K' valley} \]

\[E_{\pm} = \pm v_F p \]

\[\psi_{\pm} = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \frac{e^{i p \hat{r}/\hbar}}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm \xi e^{i \theta} \end{pmatrix} \]

\[\theta_p = \tan^{-1} \left(\frac{p_y}{p_x} \right) \]

Zero band gap comes from A/B inversion symmetry
Lattice inversion symmetry broken

A band gap opens!

Also graphene on a Moire lattice and gated bilayer graphene

Bernal (AB)-stacked bilayer graphene

Li, ... J.Z. PRB 94, 161406(R) (2016)
Zou, ... J.Z. PRB 84, 085408 (2011)
Electric field induced band gap in bilayer graphene

Zhu lab

Δ up to 200 meV

F. Wang group, IR absorption
Self-consistent tight-binding
DFT calculation

Δ

Zou, ... J. Z. PRB 82, 081407(R)(2010)
Li, ... J. Z. aXiv:1708.03644v1
In a gapped two-dimensional hexagonal lattice,

What are the valley-contrasting properties? How do we control and detect them?
Orbital magnetic moment and optical selection rules

\[m(k) = r_z \frac{3e a^2 \Delta t^2}{4\hbar(\Delta^2 + 3q^2 a^2 t^2)}. \]

\[m_j = -\frac{3}{2} \]
\[m_j = -\frac{1}{2} \]
\[m_j = -\frac{1}{2} \]
\[m_j = +\frac{1}{2} \]
\[m_j = +\frac{1}{2} \]

T-reversal

K and K' couple to light of opposite circular polarizations.
Berry curvature $\Omega(k)$: magnetic field in momentum space

Non-zero Berry curvature

$$\Omega(k) = \tau_z \frac{2\hbar^2 v_F^2 \Delta}{(\Delta^2 + 4k^2\hbar^2 v_F^2)^{3/2}}$$
Hall effect (from real magnetic field)

\[\dot{k} = -\dot{r} \times B \]

Valley Hall effect (from Berry curvature)

\[\dot{r} = -\dot{k} \times \Omega \]

How to detect valley polarization?
Detection of valley Hall effect

- Optical pumping, electrical detection

- Faraday rotation

Mak et al, Science 344, 1489(2014)

Detection of valley Hall effect

- Electrically pumped, electrically detected

net valley polarization is small

on gapped graphene and bilayer graphene

Generating valley polarization is hard!

I wish I had a valley magnet...

A valley filter proposal uses a short and narrow constriction with zigzag edges...

jzhu@phys.psu.edu
Valley-coded electron highways and traffic control at a 4-way junction

Quantum valley Hall effect

- Valley-momentum locked 1D channels
- Conductance quantization at $4e^2/h$

Topological valleytronics

- Valley valve
- A tunable electron beam splitter

jzhu@phys.psu.edu
From spin Hall effect to quantum spin Hall effect

- CdTe/HgCdTe/CdTe QW
- InAs/GaSb bilayer
- spin-momentum locked edge states
- ballistic conduction

jzhu@phys.psu.edu
https://www.scienecenews.org/article/physics-edge

Nov 7, 2017
Inverting the band gap of bilayer graphene is easy

\[E \rightarrow -E \]

\[\Delta \rightarrow -\Delta \]
Quantum valley Hall effect in bilayer graphene

Theoretical proposal:

- 4 pairs of counter-propagating metallic 1D modes in the junction
- Valley-momentum locked – “quantum valley Hall kink states”

Topological origin: Valley Chern number change

Quantum spin Hall effect

- $C_s = \pm 1$
- C_s changes by -1
- C_s changes by +1
- 1 mode per spin
- spin-momentum locked

Quantum valley Hall effect

- $\Delta > 0$
 - $C_k = +1$
 - $C_{k'} = -1$
- $\Delta < 0$
 - $C_k = -1$
 - $C_{k'} = +1$

- K: C_k changes by +2
- K': $C_{k'}$ changes by -2

- 2 modes per valley
 - x2 for spin
 - 4 modes per valley
- valley-momentum locked

jzhu@phys.psu.edu

Jung et al PRB 84, 075418 (2011), Li et al, PRB 82, 245404 (2010)
Nov 7, 2017
Band structure of a smooth junction

- Chiral in each valley
- Ballistic conductance $4e^2/h$ in the absence of inter-valley scattering

Zhenhua Qiao Group, USTC
“odd” vs “even” configuration: built-in control

\[\Delta > 0 \quad \Delta > 0 \quad \Delta < 0 \quad \Delta > 0 \]

\[\Delta > 0 \quad \Delta > 0 \quad \Delta < 0 \quad \Delta > 0 \]

Potential (a.u.)

Distance (nm)

Potential (a.u.)

Distance (nm)

E (meV)

\[\Delta' \]

\[\Delta \]
Kink states in bilayer graphene: two helicities

\[h = +1 \quad h = -1 \]
A valley valve of kink states

Valve “on” state

Valley index aligned

Valve “off” state

Valley index anti-aligned

A spin valve

https://commons.wikimedia.org/wiki/File:Spin-valve_GMR.svg
Outline

• The valley degree of freedom in hexagonal lattices
 Valley, Berry curvature, valley Hall effect and topological kink states

• Quantum valley Hall kink states in bilayer graphene
 ➢ Precision lithography
 ➢ Transport properties
 ➢ Valley valve and electron beam splitter

• Summary
A dual-split gated bilayer graphene device

1. Use the four split gates to gap both sides
2. Measure transport along the junction
3. Use the doped Si backgate to control E_F in the junction
A high-quality GaAs 2D electron gas

The highest quality two-dimensional electron system
Devices dimensions cannot be made too small

μ \sim 3 \times 10^7 \text{cm}^2\text{V/s}
\lambda \sim 0.1 \text{mm}
Van der Waals Transfer Method

Enable heterostructures of different 2D materials...

Li et al, Nat. Phys. 13, 751 (2017)
Generation I: one kink channel device

Layer by layer stacking of graphite/h-BN/bilayer graphene/h-BN
Generation II: 4-way junction

- 4 pairs of split gates
- Global Si back gate
- Dry van der Waals transfer
- 1D side contact
- 4 channels: 300 nm (L) x 70 nm (W)
Generation II: 4-way junction
All the fun we (Jing) had since 2012...

graphite bottom gates

Au top gates

Au top gates

jzhu@phys.psu.edu
Alignment of the top and bottom gates is critical

- Center alignment better than 10nm.
- Dimension control better than 5nm.
Evidence of the kink states: generation I

Kink states present only in the “+-” and “-+” configurations

Evidence of the kink states: generation I

Kink states present only in the “+-” and “-+” configurations

Also Lee et al, Scientific Reports 7, 6466(2017) (Hu-Jong Lee group)
Generation II: 4-way junctions

- R_{13} can measure north, south or both channels
- $R_c \sim$ hundreds of Ω (metal interface + access region)
Band structure of the kink states in a magnetic field

➢ Landau levels in the conduction and valence bands of the junction
➢ The increase of gap makes the kink states more robust

Nearly ballistic conduction in individual channels
Nearly ballistic conduction in individual channels

\[R_{2-4} \text{ (Ω)} \]

\[V_S i \text{ (V)} \]

\[h / 4e^2 \]

\[+ R_C \]

Kink states + hopping in the gapped quadrants

\[E_F \]
Nearly ballistic conduction in individual channels

Magnetic field suppresses hopping conduction

\[R_{24} (\Omega) \]

\[\frac{h}{4e^2} + R_C \]

\[\text{E}_F \]
Nearly ballistic conduction in individual channels

\[R_{\text{kink}} \sim 7 \text{k}\Omega \text{ at zero magnetic field} \]

\[\frac{h}{4e^2} = 6.45 \text{k}\Omega \]

- L = 300 nm
- T = 1.5 K

\(R_{\text{kink}} \sim 7 \text{k}\Omega \) at zero magnetic field
A valley valve of kink states

Valve “on” state

Valve “off” state

Valley index aligned

Valley index anti-aligned
A valley valve and beam splitter

Video courtesy of Ivar Martin

Magnetic field: wave function control

\[\mathbf{F} = q \mathbf{v} \times \mathbf{B} \]

A tunable electron beam splitter based on the chirality of the kink states

jzhu@phys.psu.edu
“On” State of the valley valve

Diagram:
- **North kink regime:**
 - **$R_{1\rightarrow3}$ (Ω):**
 - 9k
 - 8k
 - 7k
 - 6k
 - 5k
 - 4k
 - 3k
 - 2k
- **Voltage (V):**
 - Range from -40 to 40

Label:
- **B=6T**
- **D**
- **S**

Legend:
- **Red arrows:**
 - **D**
 - **S**
“On” State of the valley valve

$kink\ regime\ B=6T$

North kink
South kink

$R_{1-3}(\Omega)$

$VS\ i\ (V)$
“On” State of the valley valve

Perfect transmission through the intersection
“On” State of the valley valve

Transmission coefficient τ_i of the junction

\[\begin{array}{c}
\tau_i \\
B (T)
\end{array} \]

- τ_i vs B (T)
- R^N_{para}, R^S_{para}
- N^k_{kink}, S^k_{kink}
- R_C
A reconfigurable waveguide

Kink states can go around a bend!
Valley valve and electron beam splitter

- The valley valve works in the entire E_F range
- E_F controls splitting ratio between West and East terminals
On/off ratio of the valley valve

- ON/OFF ratio 800% at B=0, more than 100 at high field.
A tunable electron beam splitter

- Current partition ratio tunable from 0 to close to 100%.

Ren et al, arXiv: 1702.00089v1

Nov 7, 2017
An S-Matrix model

S-matrix model
+ Landauer Buttker

➤ Excellent agreement between model and data

Jason Liu
(Penn State)
Summary

Experimental realization of quantum valley Hall kink states

- Valley-momentum locked topological channel
- Gate-defined and scalable

Outlook:
- Larger on/off ratio of the valley valve
- Beam splitter in the absence of a magnetic field
- Operation at higher temperature

Valleytronics

- Valley valve
- Tunable beam splitter
Acknowledgement

The Zhu lab

- Quantum valley Hall kink states
- Quantum Hall and quantum spin Hall effect
- Edge state tunneling and interferometry
- Atomically thin 2D semiconductors

Univ. Sci. Tech. China

- Zhenhua Qiao
- Ke Wang
- Yafei Ren

PSU

- Chaoxing Liu
- Ruixing Zhang
- Peter Zhang

NIMS

- T. Taniguchi
- K. Watanabe

Nov 7, 2017

jzhu@phys.psu.edu
Thank you!