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The rising complexity of modern computation demands increasingly efficient electronic devices. As integrated
circuits (ICs) shrink, on-chip power density increases, leading to thermal constraints and performance
degradation. Addressing this requires fundamentally more energy-efficient architectures. Neuromorphic
computing offers a solution by integrating memory and processing, reducing energy-intensive data transfer
inherent in von Neumann systems Non-volatile memory (NVM) devices such as Resistive RAM (ReRAM)',
Phase-Change RAM (PCRAM)?, Ferroelectric RAM (FeRAM)?, and Electrochemical RAM (ECRAM)* enable
in-memory computing through diverse physical mechanisms. High-performance neuromorphic systems require
devices with large on/off ratios, multiple stable conductance states, linear and symmetric updates, and low
energy consumption’. ECRAM stands out for meeting all these criteria®”®. In this work, we report on the
fabrication and characterization of ECRAM devices based on two-dimensional (2D) materials, demonstrating
up to 128 programming stable and distinct conductance states. We further design and evaluate crossbar array
architecture incorporating these multi-state devices for energy-efficient multiply-and-accumulate (MAC)
operations. Our results reveal high throughput, reduced energy consumption, and adaptable configurability,
underscoring the potential of 2D ECRAM-based crossbars in accelerating linear algebra operations and enabling
future hardware platforms for Al and scientific computing.
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