Materials Innovation Platforms (MIP)

PROGRAM SOLICITATION
NSF 19-526

REPLACES DOCUMENT(S):
NSF 15-522

Full Proposal Deadline(s) (due by 5 p.m. submitter's local time):
February 04, 2019

IMPORTANT INFORMATION AND REVISION NOTES

The second MIP competition focuses on advancing convergence of materials research with biological sciences for developing new materials.

Any proposal submitted in response to this solicitation should be submitted in accordance with the revised NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 19-1), which is effective for proposals submitted, or due, on or after January 28, 2019.

SUMMARY OF PROGRAM REQUIREMENTS

General Information

Program Title:
Materials Innovation Platforms (MIP)

Synopsis of Program:
Materials Innovation Platforms (MIP) is a mid-scale infrastructure program in the Division of Materials Research (DMR) designed to accelerate advances in materials research. MIPs respond to the increasing complexity of materials research that requires close collaboration of interdisciplinary and transdisciplinary teams and access to cutting edge tools. These tools in a user facility benefit both a user program and in-house research, which focus on addressing grand challenges of fundamental science and meet national needs. MIPs embrace the paradigm set forth by the Materials Genome Initiative (MGI), which strives to "discover, manufacture, and deploy advanced materials twice as fast, at a fraction of the cost," and conduct research through iterative "closed-loop" efforts among the areas of materials synthesis/processing, materials characterization, and theory/modeling/simulation. In addition, they are expected to engage the emerging field of data science in materials research. Each MIP is a scientific ecosystem, which includes in-house research scientists, external users and other contributors who, collectively, form a community of practitioners and share tools, codes, samples, data and know-how. The knowledge sharing is designed to strengthen collaborations among scientists and enable them to work in new ways, fostering new modalities of research and education/training, for the purpose of accelerating discovery and development of new materials and novel materials phenomena/properties, as well as fostering their eventual deployment.

Cognizant Program Officer(s):

Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.

- Z Charles Ying, Lead MIP Program Director, telephone: (703) 292-8428, email: cying@nsf.gov
- Guebre X. Tessema, Program Director, telephone: (703) 292-4935, email: gtessema@nsf.gov
Applicable Catalog of Federal Domestic Assistance (CFDA) Number(s):

- 47.049 --- Mathematical and Physical Sciences

Award Information

Anticipated Type of Award: Cooperative Agreement

Estimated Number of Awards: 1 to 3

The number of awards will depend on the availability of funds and the quality of the proposals.

Anticipated Funding Amount: $12,000,000

Awards totaling $15,000,000 to $25,000,000 over a five-year period are anticipated. The proposed budget must be commensurate with the scope of the project and thoroughly justified in the proposal. MIP funding is provided yearly. Pending the availability of funds, it is anticipated that $12,000,000 will be available in Fiscal Year 2019.

Eligibility Information

Who May Submit Proposals:

Proposals may only be submitted by the following:

- Institutions of Higher Education (IHEs) - Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an international branch campus of a US institution of higher education (including through use of subawards and consultant arrangements), the proposer must explain the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Who May Serve as PI:

There are no restrictions.

Limit on Number of Proposals per Organization: 1

One (1) per organization as lead institution. Potential PIs are advised to contact their Sponsored Projects Office regarding processes used to select proposals for submission.

The institutions that were awarded a MIP in the 2015 competition as the lead institution are not eligible to submit a MIP proposal as a lead institution in the 2019 competition.

Limit on Number of Proposals per PI or Co-PI: 1

Individuals may appear as Senior Personnel (Principal Investigator/Project Director, co-PI, and other faculty or equivalent with biographical sketches included in the proposal even though their names may not be listed on the proposal Cover Sheet) on only one MIP proposal.

Proposal Preparation and Submission Instructions

A. Proposal Preparation Instructions

- **Letters of Intent:** Not required
- **Preliminary Proposal Submission:** Not required
- **Full Proposals:**

B. Budgetary Information

- **Cost Sharing Requirements:**
 - Inclusion of voluntary committed cost sharing is prohibited.
- **Indirect Cost (F&A) Limitations:**
Not Applicable

- **Other Budgetary Limitations:**

 Not Applicable

C. Due Dates

- **Full Proposal Deadline(s) (due by 5 p.m. submitter’s local time):**

 February 04, 2019

Proposal Review Information Criteria

Merit Review Criteria:

National Science Board approved criteria. Additional merit review considerations apply. Please see the full text of this solicitation for further information.

Award Administration Information

Award Conditions:

Additional award conditions apply. Please see the full text of this solicitation for further information.

Reporting Requirements:

Additional reporting requirements apply. Please see the full text of this solicitation for further information.

TABLE OF CONTENTS

- Summary of Program Requirements
- I. Introduction
- II. Program Description
- III. Award Information
- IV. Eligibility Information
- V. Proposal Preparation and Submission Instructions
 - A. Proposal Preparation Instructions
 - B. Budgetary Information
 - C. Due Dates
 - D. FastLane/Grants.gov Requirements
- VI. NSF Proposal Processing and Review Procedures
 - A. Merit Review Principles and Criteria
 - B. Review and Selection Process
- VII. Award Administration Information
 - A. Notification of the Award
 - B. Award Conditions
 - C. Reporting Requirements
- VIII. Agency Contacts
- IX. Other Information

I. INTRODUCTION

Recognizing the ever-increasing complexity of materials research that requires the close collaboration of interdisciplinary and transdisciplinary teams with access to cutting-edge tools, the Division of Materials Research (DMR) established the Materials Innovation Platforms (MIP) Program in 2015. These Platforms seek to substantially increase the rate at which new materials and novel materials phenomena/properties are discovered, understood, and developed.
Materials Innovation Platforms are neither typical research centers nor traditional user facilities. MIPs employ a highly convergent approach, across multiple dimensions:

- Use an integrated approach to meet the critical needs for research, education/training, and research infrastructure;
- Foster a culture of knowledge sharing among in-house research scientists, external users, and other contributors;
- Enable iterative, closed-loop efforts across materials synthesis/processing, materials characterization, and theory/modeling/simulation; and
- Empower the merging of ideas, approaches and technologies from widely diverse fields of knowledge (including the domain science fields relevant to the proposed MIP, as well as data science and informatics) for the purpose of accelerating discovery and development of novel materials, as well as fostering their eventual deployment.

These are 4 pillars of MIP convergence, which are designed to stimulate and accelerate discovery and innovation in a new paradigm and also distinguish MIPs from other programs.

The major activities of a MIP include:

- Develop next-generation experimental and computational tools, as well as advancing the capabilities of the current state-of-the-art tools;
- Conduct in-house research by a transdisciplinary team in a focused topic designed to address a grand challenge of fundamental science and meet a national need;
- Operate a user facility that provides unique materials research tools, samples, data, and technical services open to a diverse community of external researchers at various institutions; and
- Serve as an educational focal point for training the next generation of tool developers and users.

In this manner, a MIP will build and nurture a scientific ecosystem, which includes in-house research scientists, external users and other contributors who share tools, codes, samples, data, and know-how in order to strengthen collaboration among the scientists and enable them to work together in a new modality. MIPs, collectively, contribute to the creation of a new culture for future scientific endeavor.

II. PROGRAM DESCRIPTION

Materials Innovation Platforms (MIP) is a mid-scale infrastructure program in DMR that supports transdisciplinary research and education, cutting-edge tools, and knowledge sharing in key enabling areas of national priority. The MIP Program aligns with the Materials Genome Initiative (MGI), which strives to "discover, manufacture, and deploy advanced materials twice as fast, at a fraction of the cost." A 2014 NSF Mathematical and Physical Sciences (MPS) Advisory Subcommittee study, Closing the Loop: Materials Instrumentation, points out the opportunity to advance materials science through targeted, shared, mid-scale infrastructure investments. The MIP Program is designed to fill this need. It also embodies several of NSF's "Ten Big Ideas," including Growing Convergence Research, Harnessing the Data Revolution, Mid-scale Research Infrastructure. The research topics of specific MIP proposals may also be of high relevance to other Big Ideas such as Future Work at the Human-Technology Frontier, Quantum Leap, and/or Understanding the Rules of Life.

Fiscal Year 2019 MIP Competition

As highlighted in the Closing the Loop: Materials Instrumentation report, advancing the field of materials synthesis represents a unique opportunity to reclaim US leadership in this domain which could lead to the next generation of breakthroughs in materials science and engineering. As an example, the report states, “The growing areas of soft and bio-inspired materials are just beginning to explore rich new horizons of complexity and functionality that require their own set of innovative synthesis techniques.” This second MIP competition focuses on the convergence of materials research with biological sciences for developing new materials. New ways of synthesis/processing of complex materials with novel functionalities are of high priority. Scalable and sustainable synthesis/processing approaches are also of high interest. In addition, MIPs are expected to make full use of opportunities provided by engaging the emerging field of data science.

A successful MIP must be transformational, focus on a grand challenge or challenges of fundamental research, and align with national priorities. Some grand challenges are identified in, as examples, the 2007 National Academy Report Condensed-Matter and Materials Physics: The Science of the World Around Us, 2008 National Academy Report Inspired by Biology: From Molecules to Materials to Machines, 2012 Biomaterials Workshop Report, and 2016 Workshop Report on Frontiers in Polymer Science and Engineering. A common theme in these reports is that many of these grand challenges will not be overcome by one discipline alone and must be addressed through a transdisciplinary approach that utilizes expertise in materials science, physics, chemistry, engineering, biology, mathematics, and computer science. A convergence of ideas, approaches and technologies from diverse fields of knowledge will stimulate innovation and discovery. A highly successful MIP builds a new Platform for complex materials through convergence of expertise from various fields that have different perspectives to address a common grand challenge of multiple disciplines.

Additional links for useful documents and related activities:

- 2016 Biomaterials Midscale Tools Workshop (While this MIP solicitation is not limited to biomaterials, some instruments identified in the report of this workshop can be considered.)
- A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials
- DARPA Living Foundries
- Synthetic biology in China, UK and US
- The FAIR Guiding Principles for Scientific Data Management and Stewardship

Additional Information for MIP

The complexity and challenge of activities addressed by this program require a transformative approach to discovering and developing new materials, predicting and optimizing properties of these materials, and informing the design of materials systems. MIPs are driven
by the MGI approach with materials synthesis/processing, materials characterization, and theory/modeling/simulation applied to targeted outcomes. Accordingly, the proposed activities must close-the-loop, i.e., be a collaborative and iterative process wherein, for example, theory guides computational simulation, computational simulation guides experiments, and experiments further inform theory. It should be noted that the loop can be entered from any point, not just from theory, and can be bidirectional (e.g., experimental results improve simulation). Through this tightly connected iterative process, new discoveries are anticipated to occur at a faster rate than conventional modes of collaboration. Advances in each of the three areas (synthesis/processing, characterization, and theory/modeling/simulation) are expected for MIPs. The interactive, closed-loop process is required for in-house research and is expected for the user program as a whole, but not required for individual user projects. In addition, MIPs are expected to engage the emerging data science, including artificial intelligence and/or machine learning capabilities, as appropriate. Accelerating the closed-loop process by leveraging artificial intelligence, automation, and decision theory could eventually lead to autonomous materials discovery.

This collaborative and iterative process requires a team with the requisite expertise in synthesis/processing, characterization, theory/modeling/simulation, etc. The proposed projects are directed by a team of at least three Senior Personnel with complementary expertise. The whole MIP team also includes Senior Personnel and technical staff with expertise in tool development, data, and user facility operations. Advancement in characterization methodologies and theory/modeling/simulation approaches that benefit the research endeavor is also expected. While all instruments needed for world-class research facilities will be considered, a high priority for NSF is to support instruments with unique capabilities.

MIPs engage in a limited number of education and outreach activities that integrate strategically with the research goals, the training mission, and increase the broader impacts. Training includes next-generation instrument developers, users, and in-house research participants. Outreach activities are designed to attract users from diverse communities and level of expertise. MIPs are expected to demonstrate a significant commitment to the involvement of underrepresented groups (e.g., women, underrepresented minorities, persons with disabilities) as MIP participants and as users.

MIPs provide access to existing and new instrumentation, techniques, samples, software, modeling and simulation tools, data, databases and other resources to the broad scientific community. MIPs go beyond traditional user facilities that provide access to instrumentation: they create and nurture scientific ecosystems by bringing together the scientific and technical expertise of in-house researchers, users, and other contributors through knowledge and data sharing. Specifically, the tools supported by NSF MIP funding are for shared use by users and for in-house research; each MIP also develops and uses mechanisms to share codes, samples, data, and know-how among a community of practitioners (in-house researchers, users, and other contributors). A MIP is also expected to leverage the emerging field of data science as part of the integration and iteration of experiment and computational efforts. And, as appropriate, to utilize cloud resources for data storage and sharing. Because of these efforts and a transdisciplinary team, each MIP is a scientific ecosystem that promotes cross-fertilization of ideas and enables new science that cannot be accomplished otherwise.

MIPs must support broad access to a rich national user base at universities, national laboratories, and industry. They operate user facilities that are open to a diverse community of external and internal researchers at various institutions. To promote usage of their facilities, MIPs do not charge academic users in the United States for reasonable time with experts, technicians, or use of equipment acquired through the MIP award. Major equipment acquired through the MIP funding must devote at least 50% of the instrument operational time to external users (defined as those who are neither MIP participants nor affiliated with the institutions where MIP user facilities operate). Users may be charged for consumables and supplies, especially those that are expensive and not routine. Full cost recovery is applied to proprietary research.

Platforms reside at academic institutions where the appropriate infrastructure, including laboratory, common space and sharing of equipment, already exists to assist in the proposed research and add value to the MIP user facility. MIPs are also funded for acquisition and development of new equipment, tools, and supporting technologies that will position and maintain the facility at the frontier of the proposed materials research area. Tools (or suite of tools) acquired or developed through a MIP award are novel and/or unique and go beyond the scope and scale of those tools that are acquired through other NSF modes of support, such as the Major Research Instrumentation (MRI) program.

The MIP Program will support acquisition and development of instruments, software and databases; service contracts on purchased equipment; professional staffing including support for the principal investigators, other senior personnel and technicians; and a limited number of students and postdoctoral researchers. Five-year awards totaling $15,000,000 to $25,000,000 for the award period are anticipated. Equipment acquisition and development is expected to be mainly in the first few years. User facility operation may ramp up over time and is expected to reach a steady state by year 4. Approximately 50% of the MIP funds provided by NSF, after subtracting instrument acquisition and development costs, should be devoted to the user facility operation.

The MIP program will NOT support requests for any of the following:

- Construction, renovation or modernization of rooms, buildings or research facilities;
- General purpose and supporting equipment. Supporting equipment refers to basic, durable components of a research facility that are integral to its operation (e.g., fume hoods, elevators, laboratory casework, cryogen storage systems, general-purpose computational or data storage systems);
- Sustaining infrastructure and/or building systems. This category includes (but is not limited to) the installation of or upgrades to infrastructure related to the supply of power, ventilation, water or research gases, routine multi-purpose computer networks, standard safety features, and other general purpose systems (e.g., toxic waste removal systems, and telecommunications equipment); or
- General purpose platforms or environment. This category includes (but is not limited to) general purpose fixed or non-fixed structures and vehicles whose role is to host or transport an instrument.

DMR manages the MIPs through the National Facilities and Instrumentation program in the division. MIPs are awarded as cooperative agreements with an initial commitment of five years, with the possibility of one five-year renewal, subsequent to a rigorous and favorable review by NSF.

III. AWARD INFORMATION
Anticipated Type of Award: Cooperative Agreement.

The number of awards will depend on the availability of funds and the quality of the proposals.

Awards totaling $15,000,000 to $25,000,000 over a five-year period are anticipated. The proposed budget must be commensurate with the scope of the project and thoroughly justified in the proposal. MIP funding is provided yearly. Pending the availability of funds, it is anticipated that $12,000,000 will be available in Fiscal Year 2019.

IV. ELIGIBILITY INFORMATION

Who May Submit Proposals:

Proposals may only be submitted by the following:

- Institutions of Higher Education (IHEs) - Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an international branch campus of a US institution of higher education (including through use of subawards and consultant arrangements), the proposer must explain the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Who May Serve as PI:

There are no restrictions.

Limit on Number of Proposals per Organization: 1

One (1) per organization as lead institution. Potential PIs are advised to contact their Sponsored Projects Office regarding processes used to select proposals for submission.

The institutions that were awarded a MIP in the 2015 competition as the lead institution are not eligible to submit a MIP proposal as a lead institution in the 2019 competition.

Limit on Number of Proposals per PI or Co-PI: 1

Individuals may appear as Senior Personnel (Principal Investigator/Project Director, co-PI, and other faculty or equivalent with biographical sketches included in the proposal even though their names may not be listed on the proposal Cover Sheet) on only one MIP proposal.

Additional Eligibility Info:

Proposals submitted in response to this solicitation may not duplicate or be substantially similar to other proposals funded or concurrently under consideration by NSF or to proposals previously declined by NSF and not substantially revised. Proposals not satisfying this condition will be returned without review.

V. PROPOSAL PREPARATION AND SUBMISSION INSTRUCTIONS

A. Proposal Preparation Instructions

Full Proposal Preparation Instructions: Proposers may opt to submit proposals in response to this Program Solicitation via Grants.gov or via the NSF FastLane system.

- Full proposals submitted via FastLane: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the general guidelines contained in the NSF Proposal & Award Policies & Procedures Guide (PAPPG). The complete text of the PAPPG is available electronically on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg. Paper copies of the PAPPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov. Proposers are reminded to identify this program solicitation number in the program solicitation block on the NSF Cover Sheet For Proposal to the National Science Foundation. Compliance with this requirement is critical to determining the relevant proposal processing guidelines. Failure to submit this information may delay processing.

See PAPPG Chapter II.C.2 for guidance on the required sections of a full research proposal submitted to NSF. Please note that the proposal preparation instructions provided in this program solicitation may deviate from the PAPPG instructions.

Cover Sheet

- **Proposal Title.** The proposal title must begin with "MIP:" followed by an informative project title.
- **Collaborative Proposals.** Only the single proposal method, submitted by the lead institution with subawards to other institutions if any, should be used. Submission of a collaborative proposal from multiple organizations is not allowed.

Proposals that fail to comply with formatting instructions per the Proposal and Award Policies and Procedures Guide, the Cover Sheet specifications, or the instructions given below may delay processing or result in the proposal being returned without review.

Project Description (No more than 35 pages):

The Project Description must include the following sections and section headers:

1. **Senior Participant List.** Provide a list of participating Senior Personnel (university faculty and equivalent) by full name, organizational and departmental affiliation, and major roles in the proposed MIP (e.g., in-house research, tool development, user facility operation, and/or education). Describe briefly the team’s expertise with respect to the proposed in-house research, tool development, user facility operation, and knowledge sharing. (It will be helpful to boldface the name of each Senior Personnel wherever it occurs throughout the whole Project Description.) **Limit: 5 pages for sections 1 and 2 together.**

2. **Results from Prior NSF Support.** Description of collaborative research, tool development, user facility operation, and knowledge sharing should be addressed by an end date in the past five years must provide information on their NSF award; in cases where a PI or co-PI has received more than one award, they need only report on the award most closely related to the proposal. There is no need to list awards of Senior Personnel not listed on the proposal Cover Sheet. **Limit: 5 pages for sections 1 and 2 together.**

3. **Vision, Goals, and Rationale.** **Limit: 3 pages.**
 - i. Provide a vision statement for the proposed entire Platform.
 - ii. In separate paragraphs or bullets, state the major goals of knowledge sharing, in-house research, instrument acquisition and development, user facility operation, education/training, and diversity of the proposed Platform.
 - iii. Discuss the critical needs of the proposed MIP for (a) addressing a grand challenge or challenges of fundamental research, (b) a transdisciplinary team to address the grand challenge(s), (c) new experimental and computational tools as well as technique development, (d) fostering new modalities of research through knowledge sharing, and (e) education/training of next-generation instrument developers and users. This section should also describe how the proposed MIP advances relevant NSF Big Ideas and national priorities.

4. **Platform/Knowledge Sharing.** MIPs are designed to foster new modalities of research and education, through sharing tools, codes, samples, data and know-how. In addition, MIPs are expected to incorporate the emerging fields of data science, including artificial intelligence and/or machine learning, as appropriate, in materials research. In this section, identify likely challenges in creating a culture of knowledge sharing and describe strategies to overcome these challenges. Describe goals and proposed mechanisms for knowledge sharing, the anticipated results, and the expected outcome and impacts. Include mechanisms for knowledge sharing within the in-house research team; among external users; and for the whole community of practitioners that the proposed MIP represents (in-house research scientists, external users, and other contributors). Different mechanisms could be needed, depending on type of tools, codes, samples, data (including metadata) and know-how to be shared. The mechanism should balance between confidentiality and creation of a culture of knowledge sharing, as well as be consistent with relevant NSF policies (see, for example, PAPPG Chapter XI.D) and fair data principles. (The two-page Data Management Plan can be used to provide additional details for data access and sharing, as well as discussing other issues such as types and format of data and metadata, data archiving, data security, etc., as appropriate) **Limit: 5 pages.**

5. **Scientific Program.** Describe the scope and targeted scientific outcome of the MIP and specific in-house research activities. The scope of in-house research should be focused, smaller than the scope covered by the whole MIP, and synergistic to the user program. This section must also discuss how the proposed in-house research closes the loop among materials synthesis/processing, materials characterization, and theory/modeling/ simulation such that it is iterative and synergistic and utilizes a transdisciplinary approach to enhance the scientific impact above and beyond what can be accomplished using conventional approaches. If more than one institution is involved in the in-house research, mechanisms to prevent the negative impact of distance on the collaborative, interactive "closed loop" nature of the MIP must be clearly described. **Limit: 6 pages.**

6. **Tools.** Describe the experimental and computational capabilities needed for both the in-house research and user program of the proposed MIP. Discuss how the MIP engages and leverages the existing infrastructure and instruments. Provide justification (in terms of critical needs in science and/or uniqueness in the United States) for new instrument development and acquisition, as well as a timeline for development and acquisition. If instruments are located at more than one institution, mechanisms to minimize the negative impact of distance on user service must be clearly described. List the major instruments (existing and new) that will be available to external users. The major new instruments acquired through the MIP funding must devote at least 50% of the instrument operational time to external users. **Limit: 7 pages for sections 6 and 7 together (including the table).**

Table of Major Instruments that Will Be Available to External Users.

<table>
<thead>
<tr>
<th>Item</th>
<th>Acquisition, Development, or Existing</th>
<th>When Available to External Users</th>
<th>Fraction of Operational Time Available to External Users</th>
<th>Approximate Cost ($K) for Acquisition or Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. **User Facility Operation.** Describe the proposed user access modes (e.g., independent, collaboration, fee for service, sample request, and/or remote access) by users and for in-house research, the user proposal submission, review and selection process, staffing, instrument time/resource allocation, user training, safety, and user fee structure. MIPs may not charge academic users in the United States for time with experts, technicians, or use of the instruments acquired through the MIP funding. Users may be charged for consumables and for using the existing instruments. Full cost recovery is applied to proprietary research. **Limit: 7 pages for sections 6 and 7 together (including the table).**

8. **Education/Training.** Describe a limited number of well-chosen education and training activities that integrate strategically with the research goals and advance the educational experiences for users, as well as graduate and undergraduate students, postdoctoral researchers, and others associated with the MIP as a unique national resource. Potential activities such as hands-on workshops, summer/winter schools, webinars, and/or research experiences for undergraduates may be considered. Include outreach plans designed to increase the external user base, to attract users from diverse communities and expertise (from experts to entrants to the field), and to reach potential users in industry, whose work could inform or benefit from instrumentation and technique development activities. **Limit: 4 pages for sections 8 and 9 together.**

9. **Diversity Strategic Plan.** MIPs are expected to demonstrate a significant commitment to the involvement of underrepresented groups (e.g., women, underrepresented minorities, persons with disabilities) as MIP participants (faculty, scientific experts, technicians, postdoctoral researchers, and students) and as users. MIP are also expected to reach users from a broad range of academic institutions in the United States (e.g., R1 and non-R1 institutions, minority serving institutions). Describe the MIPs strategic plan of broadening participation at all levels, the metrics that will be used to measure progress, and the desired outcome for the 5-year award period. **Limit: 4 pages for sections 8 and 9 together.**

10. **Collaboration with industry, national laboratories, and others.** Describe plans for intellectual and resource exchanges, cooperation, and partnerships with other organizations that may involve industry, national laboratories, non-profit organizations, and others, as appropriate. **Limit: 5 pages for sections 10 and 11 together (including the table).**

11. **Management Plan.** Limit: 5 pages for sections 10 and 11 together (including the table).

 - Organizational Chart: Show all critical components of the governance structure of the proposed MIP.
 - Describe functions of key leadership positions and major committees: the executive committee, the user proposal review committee, the user committee, the external advisory committee, etc.
 - Describe the procedures and criteria used to select, administer, and evaluate in-house research projects. (The procedures for user projects are described in Section 7.)
 - Provide a description of the resources that the organization(s) will provide to the proposed MIP, should it be funded. Resources may include space, faculty release time, faculty and staff positions, capital equipment, access to existing facilities, collaboration, support of education activities and/or others. Do not given as dollar equivalents.
 - In a tabular form, enter the NSF budget request (in $K) for each of the major MIP activities. For each entry in the table, include direct and indirect costs. Equipment acquisition and development is expected to be mainly in the first few years. User facility operation may ramp up over time and is expected to reach a steady state by year 4. Approximately 50% of the MIP funds provided by NSF, after subtracting instrument acquisition and development costs, should be devoted to the user facility operation when the user facility operation reaches a steady state. Student support is typically not under education/training, and should be included under appropriate categories depending on what they will do.

 Table of NSF Funding Request (in $K).

<table>
<thead>
<tr>
<th>Activity</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Years 1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument acquisition and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User facility operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-house research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform/Knowledge sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration with Industry, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others, if any (please specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Supplementary Documents:

 No letters of collaboration or support from anticipated users are allowed. If a proposal involves collaboration with scientists not at the lead institution, include only official letters of collaboration from participating organizations. Such letters should not contain endorsements or evaluation of the proposed project. Details about collaborative work to be done under this project should be included within the Project Description, not in the letter(s) of collaboration. **Limit: 5 pages (with no more than one letter per page).**

 Required Additional Information:

 Immediately after submission of the full proposal, please send an e-mail to mip@nsf.gov:

 A Microsoft Excel file with the filename: proposal #_institution_participants. A spreadsheet of Senior Participants (Principal Investigator/MIP Director, co-PI, and other faculty or equivalent with biographical sketches included in the proposal). The spreadsheet must have 5 columns. Major MIP roles include in-house research, tool development, user facility operation, education, etc.
B. Budgetary Information

Cost Sharing:

Inclusion of voluntary committed cost sharing is prohibited.

C. Due Dates

- Full Proposal Deadline(s) (due by 5 p.m. submitter's local time):

 February 04, 2019

D. FastLane/Grants.gov Requirements

For Proposals Submitted Via FastLane:

To prepare and submit a proposal via FastLane, see detailed technical instructions available at: https://www.fastlane.nsf.gov/a1/newstan.htm. For FastLane user support, call the FastLane Help Desk at 1-800-673-6188 or e-mail fastlane@nsf.gov. The FastLane Help Desk answers general technical questions related to the use of the FastLane system. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this funding opportunity.

For Proposals Submitted Via Grants.gov:

Before using Grants.gov for the first time, each organization must register to create an institutional profile. Once registered, the applicant's organization can then apply for any federal grant on the Grants.gov website. Comprehensive information about using Grants.gov is available on the Grants.gov Applicant Resources webpage: http://www.grants.gov/web/grants/applicants.html. In addition, the NSF Grants.gov Application Guide (see link in Section V.A) provides instructions regarding the technical preparation of proposals via Grants.gov. For Grants.gov user support, contact the Grants.gov Contact Center at 1-800-518-4726 or by email: support@grants.gov. The Grants.gov Contact Center answers general technical questions related to the use of Grants.gov. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this solicitation.

Submitting the Proposal: Once all documents have been completed, the Authorized Organizational Representative (AOR) must submit the application to Grants.gov and verify the desired funding opportunity and agency to which the application is submitted. The AOR must then sign and submit the application to Grants.gov. The completed application will be transferred to the NSF FastLane system for further processing.

Proposers that submitted via FastLane are strongly encouraged to use FastLane to verify the status of their submission to NSF. For proposers that submitted via Grants.gov, until an application has been received and validated by NSF, the Authorized Organizational Representative may check the status of an application on Grants.gov. After proposers have received an e-mail notification from NSF, Research.gov should be used to check the status of an application.

VI. NSF PROPOSAL PROCESSING AND REVIEW PROCEDURES

Proposals received by NSF are assigned to the appropriate NSF program for acknowledgement and, if they meet NSF requirements, for review. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF either as ad hoc reviewers, panelists, or both, who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal. In addition, Program Officers may obtain comments from site visits before recommending final action on proposals. Senior NSF staff further review recommendations for awards. A flowchart that depicts the entire NSF proposal and award process (and associated timeline) is included in PAPPG Exhibit III-1.

A comprehensive description of the Foundation's merit review process is available on the NSF website at: https://www.nsf.gov/bfa/dias/policy/ment_review.
Proposers should also be aware of core strategies that are essential to the fulfillment of NSF's mission, as articulated in *Building the Future: Investing in Discovery and Innovation - NSF Strategic Plan for Fiscal Years (FY) 2018 – 2022*. These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF's mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF's mission is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF's contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation's most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF's mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF's mission "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes." NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

- All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
- NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These "Broader Impacts" may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
- Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. **Both** criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (PAPPG Chapter II.C.2.d(1). contains additional information for use by proposers in development of the Project Description section of the proposal). Reviewers are strongly encouraged to review the criteria, including PAPPG Chapter II.C.2.d(1), prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

- **Intellectual Merit:** The Intellectual Merit criterion encompasses the potential to advance knowledge; and
- **Broader Impacts:** The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the
plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the review itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societally relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM); improved STEM workforce development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher Mentoring Plan, as appropriate.

Additional Solicitation Specific Review Criteria

- **Vision/Motivation:** How well is the proposal motivated by addressing a grand challenge or challenges of fundamental science aligned with national priorities?
- **Convergence/Knowledge Sharing:** To what extent will the proposed MIP substantially accelerate materials discovery and development beyond current approaches, through sharing of knowledge (tools, codes, samples, data and know-how)? How effective is the knowledge sharing mechanisms likely be? Does the MIP have a sound plan to take advantage of opportunities that the emerging data science provides?
- **Research:** How well is the proposed in-house research focused and targeted to addressing a critical scientific challenge? How well does the proposed research use a tightly closed collaborative loop process with accelerated, iterative feedback among materials synthesis-processing, materials characterization, and theory/modeling/simulation?
- **Infrastructure:** To what extent does the proposed MIP meet a critical infrastructure need for the materials community? What is the degree of uniqueness of the proposed key instruments for materials synthesis-processing and materials characterization in the national context? Do the proposed instruments enable new ways of synthesis/processing of complex materials? Are the plans and timelines for equipment acquisition, development, and commissioning well thought out?
- **Facility Operation:** Are the plans for the user facility operation (e.g., access modes, user proposal review and selection process, staffing, instrument time/resource allocation, user training, and safety) well thought out? To what extent does the MIP provide access to a diverse group of users (including those under-represented in science and engineering), and from a broad range of academic institutions in the United States (e.g., R1 and non-R1 institutions, minority serving institutions)?
- **Education/Training:** To what extent will the proposed platform serve as an educational focal point for training the next generation of instrument developers and users?
- **Knowledge Transfer:** To what extent does the proposal include industrial involvement through, for example, sharing instruments, samples and expertise, for commercialization of new instruments and deployment of novel materials?

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Ad hoc Review and/or Panel Review, or Reverse Site Review.

Proposals submitted in response to this program solicitation will be reviewed by panels, supplemented with ad hoc review as needed. Finalists will be invited for a reverse site visit at NSF. At the reverse site visit, finalists will make oral presentations to a second panel and NSF staff and engage in a question and answer session. NSF reserves the option to conduct a site visit prior to making an award.

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable, additional program specific criteria. A summary rating and accompanying narrative will generally be completed and submitted by each reviewer and/or panel. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell applicants whether their proposals have been declined or recommended for funding within six months. Large or particularly complex proposals or proposals from new awardees may require additional review and processing time. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program Officer’s recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements for review of business, financial, and policy implications. After an administrative review has occurred, Grants and Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.
VII. AWARD ADMINISTRATION INFORMATION

A. Notification of the Award

Notification of the award is made to the submitting organization by a Grants Officer in the Division of Grants and Agreements. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process.)

B. Award Conditions

An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1)*; or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF’s Website at https://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF. Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

Special Award Conditions:

Special award conditions for MIPs will be within the cooperative agreement.

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer no later than 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports). No later than 120 days following expiration of a grant, the PI also is required to submit a final project report, and a project outcomes report for the general public.

Failure to provide the required annual or final project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF’s electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

Program specific annual and final report guidelines will be provided.

VIII. AGENCY CONTACTS

Please note that the program contact information is current at the time of publishing. See program website for any updates to the points of contact.

General inquiries regarding this program should be made to:

- Z Charles Ying, Lead MIP Program Director, telephone: (703) 292-8428, email: cying@nsf.gov
- Guebre X. Tessema, Program Director, telephone: (703) 292-4935, email: gtessema@nsf.gov
- Leonard Spinu, Program Director, telephone: (703) 292-2665, email: lspinu@nsf.gov

For questions related to the use of FastLane, contact:
X. OTHER INFORMATION

The NSF website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants Conferences. Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match their identified interests. "NSF Update" also is available on NSF's website.

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at http://www.grants.gov.

ABOUT THE NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities (FASED) provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See the NSF Proposal & Award Policies & Procedures Guide Chapter II.E.6 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Website at https://www.nsf.gov

- Location: 2415 Eisenhower Avenue, Alexandria, VA 22314
- For General Information (NSF Information Center): (703) 292-5111
- TDD (for the hearing-impaired): (703) 292-5090
- To Order Publications or Forms: Send an e-mail to: nsfpubs@nsf.gov or telephone: (703) 292-7827
- To Locate NSF Employees: (703) 292-5111
PRIVACY ACT AND PUBLIC BURDEN STATEMENTS

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by awardees will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding applicants or nominees as part of a joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50, "Principal Investigator/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004), and NSF-51, "Reviewer/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004). Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton
Reports Clearance Officer
Office of the General Counsel
National Science Foundation
Alexandria, VA 22314