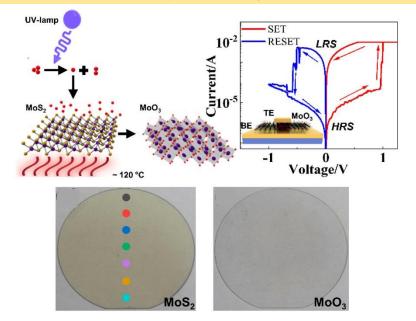
Wafer scalable single-layer amorphous MoO₃

External User - 2022


2DCC MIP at Penn State,

DMR-1539916 & DMR-2039351

Md Hasibul Alam, Sayema Chowdhury, Anupam Roy, Jamie Warner, Deji Akinwande (UT-Austin) et al.; Haoyue Zhu, Tanushree Choudhury, Joan Redwing (2DCC, Penn State)

Project Summary: Molybdenum trioxide (α -MoO₂) is a wide bandgap 2D layered oxide (E_{a} ~3 eV) that is of interest for resistive switching-based nonvolatile memory devices. It is difficult to produce large-area monolayer MoO₃ through exfoliation of bulk crystals or other techniques. This study demonstrates a facile route to obtain wafer-scale monolayer amorphous MoO₃ using monolayer 2D MoS₂ grown by metalorganic chemical vapor deposition (MOCVD) as a starting material, following by UV-ozone oxidate at substrate temperatures as low as 120°C. The process yields smooth, continuous, uniform and stable monolayer oxide with wafer-scale homogeneity. Using the subnanometer MoO₃ as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with low voltage operation and high ON/OFF ratio. These results, which are potentially extendable to other transition metal oxides, will enable further exploration of subnanometer stoichiometric MoO₃, extending the frontiers of ultrathin flexible oxide materials and devices. Published in ACS Nano (2022), available online at: https://doi.org/10.1021/acsnano.1c07705

2DCC Role: The wafer-scale monolayer MoS_2 used as the starting material in this study was produced by MOCVD in the 2DCC-MIP facility.

A low temperature UV/ozone process was developed to convert wafer-scale 2D MoS_2 to monolayer amorphous MoO_3 . The large area MoO_3 was used to demonstrate ultra-thin oxide-based resistive switching devices with low voltage operation and high ON/OFF ratio.

