2DCC MIP at Penn State, DMR-1539916
In-house Project - 2021

New Theory Tools for Modeling Growth of TMD Materials

Nadire Nayir, Yuanxi Wang, Danielle Hickey, Yanzhou Ji, Tanushree Choudhury, Nasim Alem, Joan Redwing, Long-Qing Chen, Vincent Crespi, Adri van Duin

Project Summary: The first ReaxFF force field developed for $2 \mathrm{D}-\mathrm{WSe}_{2}$ provides the community with a highly efficient means that describe material growth, phase transitions, defect formation and migration and thus can provide valuable atomistic insights into experimental efforts on growth, phase, and defect engineering as a function of the local chemical environment. This potential can elucidate further the morphological evolution of monolayers in different environments in terms of loading conditions and defect concentrations/distributions. Interactions between vacancies and ripples in a 2D layers ("ripplocations") suggest that vacancies could stabilize buckled structures by modulating the strain energy and possibly open a venue for sweeping out undesirable defects such as vacancies from 2D WSe ${ }_{2}$.
MoSe_{2} and WS_{2} force fields were also trained and will be made available to the 2D community. A new ReaxFF potential for TMD heterostructures ($\mathrm{W}_{\mathrm{x}} \mathrm{Mo}_{1-x} \mathrm{Sy}_{y} \mathrm{Se}_{2-\mathrm{y}}$ where $x=0-1, y=0,1,2)$ is under active development to enable simulations for the growth of in-plane and vertically stacked TMD heterostructures to understand how defects and grain boundaries impact nucleation, domain orientation, lateral growth and chalcogen/metal exchange.
J. Phys. Chem. C 2020, 124 (51), 28285-28297. DOI:10.1021/acs.jpcc.0c09155

2DCC Role: The 2DCC Theory/Simulation/Data facility has developed three different ReaxFF potentials for $\mathrm{WSe}_{2}, \mathrm{MoSe}_{2}$, and WS_{2} by training against extensive first-principles data on periodic and non-periodic systems. The 2DCC Experiment/Characterization facility has also provided data to validate the performance of the new potentials.

DMR
DIVISION OF MATERIALS RESEARCH

