Frontiers in MBE Growth of TMDs and Topological Insulators

OR: HOW I LEARNED TO STOP WORRYING AND LOVE THE EVAPORATION OF REFRACTORY METALS

ANTHONY RICHA RDELLA
Outline

- Molecular Beam Epitaxy (MBE)
 - MBE growth of TMD and TI materials
 - Complications
 - Current status of the field
 - Recent results in TI materials
 - Axion insulator
What is Molecular Beam Epitaxy (MBE)?

- One of more streams of atoms are aimed at a substrate
 - Sublimated thermally in ultra high vacuum
- Grow a crystal **one atomic layer at a time**
 - Controllably add impurities to create useful properties
- Use Reflection High Energy Electron Diffraction to monitor growth surface

![Diagram of Molecular Beam Epitaxy](image-url)
MBE with conventional materials

- In-situ monitoring of growth by RHEED
 - Real time observation of growth mode
 - Growth rate by RHEED oscillations
- Layer-by-layer control
 - Atomic period superlattices
- Very clean environment
 - Ultra high vacuum (UHV), >5N purity sources
- Very high mobility 2DEG samples
 - e.g. InAs 2DEG grown on InP substrate
 - Carrier density 6.2×10^{11} cm$^{-2}$
 - Mobility > 1,000,000

Volmer-Weber
3D Island
Frank-van der Merwe
Layer-by-layer
Stranski-Krastanov
Mixed

$\Theta<1$ ML
$1<\Theta<2$
$\Theta>2$

Manfra Group
Layered materials, van der Waals bonds between layers.
- Naturally 2D. Scaling down in Z dimension is provided for free
- Spans metals to semiconductors to superconductors
 - Thickness dependent bandgaps
 - Novel spin and optical properties

Topological Insulators
- Large spin orbit coupling
- Spin polarized surface states
2D materials: TMDs and TIs

- **van der Waals epitaxy (VDWE)**
 - Traditional growth models like Stranski-Krastonov may not apply
 - Lattice matching materials isn’t as important
 - Choose materials based on electronic/optical properties not physical lattice properties

Transition Metal Dichalcogenide

MoS$_2$

![MoS2 diagram](https://commons.wikimedia.org/w/index.php?curid=2976497)

Topological Insulator

$(\text{Bi}_{1-x}\text{Sb}_x)\text{Te}_3$

![Topological Insulator diagram](https://commons.wikimedia.org/w/index.php?curid=2976497)

TMD on TI

20% lattice mismatch!

![TMD on TI](https://commons.wikimedia.org/w/index.php?curid=2976497)

Yue, 2D Mater. 4, 045019 (2017)
Misses a number of papers, but gives an idea of how MBE VDWE of TMDs is growing.
Differences from conventional MBE

- VDWE – Prone to twins and rotations due to lack of strongly orienting bonds
- Nucleation leads to grain boundaries
- Large state space to optimize within
 - Temperature
 - Diffusion and absorption
 - Higher better for limiting nucleation
 - Growth rate (slow)
 - Flux ratios (typically 20:1, maybe 1000:1)
 - Substrate (graphene, sapphire, CaF\textsubscript{2})
 - Bond energies between constituent atoms
- Theoretical modeling of growth dynamics is very important
10 ML WSe$_2$ on Sapphire

- Recent work from Univ. of Tokyo, RIKEN
 - RT seed layer, annealed at high T
 - Layer-by-layer growth (RHEED oscillations)
 - Then high T post-anneal
- Ambipolar transport with ionic liquid gating
- XRD rocking curve is wide
 - Probably due to domain boundaries

RHEED oscillations

Nakano, NanoLett 17, 5595 (2017)
1 ML MoSe$_2$ on Sapphire

- Cho group at Yonsei, Korea
 - Towards wafer scale fabrication
 - Observe changes in optical adsorption related to changes in bandstructure with film thickness

Interfacial layer?

Island nucleation and coalescing leads to grain boundaries

- Dislocations at small angle grain boundaries
- Can even lead to buckling of the film

AFM

Bi_2Se_3 on InP (111)

XRD

$(\text{Bi,Cr,Sb})_2\text{Te}_3$ on InP (111)

Plan view TEM

Bi_2Se_3 on Sapphire

"String of pearls" dislocations

Moiré patterns

G. Smith et al., (in preparation)

APL Mat. 3, 083303 (2015)

https://www.uni-ulm.de/fkp/lehre/gl5/ComKurs1/question/crystal/sol4.htm
Issue: Grain boundaries

- Defects at boundaries limit mobilities
- In some materials like MoSe2, states seen in STM
 - Easy way to see domain sizes in monolayer films
- Can create states in the bandgap

STM of MoSe2 at -1V bias

Hong, NanoLett. 17, 6653 (2017)
Effect of growth temperature

- WSe$_2$ on HOPG (UT, Dallas)
 - Several times larger grain size, but very slow!
 - Similar for MoSe$_2$ (N. Comms. 8, 15135 (2017))

$T_{\text{sub}} = 500^\circ\text{C}$ for 3 hours

Yue, 2D Mater. 4, 045019 (2017)
Nucleation: Surface reactions

- Passivating substrates prior to growth is common
- Defects may dominate nucleation sites
 - Issue for both CVD and MBE

- e.g. Benzaldehyde adsorption on water passivated silicon(001)
 - By STM, 1/(100) Si surface atom is not passivated
 - Dangling bonds are bright spots
 - Benzaldehyde reacts at dangling bonds

2D materials, the surface is the device. Chemical stability is critical.

Surfaces may be stable in air

Edges and domain boundaries are vulnerable to oxidation

- TMDs - Longo et al. 2D Mater. 4 025050
 - Edges become conductive. STM - Addou et al. 2D Mater. 5 025017
- TIs - Similar mechanism
 - Wildly different claims about stability against oxidation because of this

Contacts can have interfacial reactions - Smyth, 2D Mater. 4 025084 (2017)
2DCC: Range of growth strategies

Solid source MBE

Se cracker to increase reactivity
In-Situ characterization

CBE / MOMBE
hybrid MBE

MOCVD
Vacuum suitcase to go between instruments

physical vapor deposition

chemical vapor deposition
Outline

- Molecular Beam Epitaxy (MBE)
- MBE growth of TMD and TI materials
 - Complications
 - Current status of the field
- Recent results in TI materials
 - Axion insulator
Topological Insulator Surface States

- Large spin-orbit coupling + time reversal symmetry leads to novel topology of bandstructure
- 2D ‘helical Dirac fermions’ on surfaces
 - Bi$_2$Se$_3$, Bi$_2$Te$_3$, Sb$_2$Te$_3$ (and their alloys)
- ‘Spin-momentum locking’ of 2D helical Dirac surface states: spintronic devices.

Fu & Kane, Phys. Rev. B 76, 045302 (2007)
Transport in Topological Insulators

- Want electrons to move only thru surface states
 - Want E_F in bulk bandgap where surface states are
- Break degeneracy of the Dirac point by magnetic doping
 - Massive Dirac Hamiltonian
 - To open a gap, the magnetization must be out of plane
 - Can create a new chiral edge state

$$H(k) = A(\sigma^x k_y - \sigma^y k_x) + \sigma^z m_z$$
$$E = \pm \sqrt{(Ak_x)^2 + (Ak_y)^2 + m_z^2}$$
Half quantum Hall effect on the surface

$\sigma_H = e^2/h$

$J_t = \frac{E_x}{4\pi}$

$J_b = \frac{E_x}{4\pi}$

When parallel, “domain wall” traps a chiral edge state.

Quantum anomalous Hall (QAH) effect

Topological magnetoelectric effect (TME)

- Material showing TME

\[\theta = \pi \text{ for TI} \]
\[\theta = 0 \text{ for NI} \]

Axion electrodynamics!
F. Wilczek, PRL 58, 1799 (1987)

Axion insulator:

Criteria:
- 3D regime
- Gapped all surfaces
- Maintain $\theta = \pi$ in the bulk

A theoretical Proposal:

\[
\begin{align*}
S_\theta &= \frac{\theta}{2\pi} \frac{e^2}{h} \int d^3x \, dt \mathbf{E} \cdot \mathbf{B} \\
\theta &= \pi \text{ for TI} \\
\theta &= 0 \text{ for NI}
\end{align*}
\]

Recent reports:

No experimental evidence of “antiparallel”.

Axion Insulator
Axion Insulator

Our version:

Transport measurement setup:
Leiden Cryogenics, 30mK PPMS, ~2K and above

See also:

V-QAH sample

0.15

T

Hc2

Hc1

Cr-QAH sample

\(\rho_v (u_0 H) \)

\(H(T) \)

QAH Insulator
parallel magnetization alignment

Axion Insulator
anti-parallel magnetization alignment

3QL V(9B,9S)_2Te

4,5

4QL 9B(9S)_2Te

3QL Cr(8B,8S)_2Te

SrTiO_3(111)

Sample with Te cap

STO substrate

Indium contacts

Back gate

Sample with Te cap

500 µm

1000 µm

See also:
Signature of an Axion Insulator

3-5-3 sandwich heterostructure SH1

Resulting from the antiparallel magnetization alignment.

Zero σ_{xy} plateaus

$-H_{c1} < H < -H_{c2}$

$H_{c2} < H < H_{c1}$

Temperature dependence of Hall resistivity

2-step transition up to 10K.
Evidence of Antiparallel Magnetization

Magnetic Force Microscopy (MFM):

3-5-3 sandwich heterostructure SH2

δf: RMS of the MFM signal

δf (mHz)

$\rho_{\text{int}} (\text{h/e}^2)$

$V_g = 0 \text{V}$

$T = 5.3 \text{K}$

$f = 5 \text{mHz}$

$f = -5 \text{mHz}$

$\mu_0 H (\text{T})$
Gate Dependence

3-5-3 sandwich heterostructure SH1

Crossing valence band, RKKY

OFF/ON ~8000

QAH and axion insulator states persist within the gap.

3/27/2018
Conclusion

- Challenges of MBE of van der Waals materials
 - Current state of the field with MBE of TMD and TI materials
 - Domain sizes and boundaries

- 2DCC capabilities
 - Growth and in-situ characterization

- Recent axion insulator results with magnetic tri-layer TIs
 - Successful growth of Cr- and V- doped QAH sandwich heterostructures.
 - Low temperature transport and MFM data demonstrate the axion insulator state with antiparallel magnetization alignment.
 - Observation of the axion insulator paves the way to explore the TME effect and other fascinating topological phenomena.

Thanks to...

Nitin Samarth Di Xiao Timothy Pillsbury Yanan Li

C. Z. Chang W. Wu C. X. Liu M. H. W. Chan