Snapshots are brief summaries of significant materials-related breakthroughsby MRI researchers. More infomration is available by visiting the links at the end of each summary.

The lotus effect has inspired many types of liquid repelling surfaces, but tiny water droplets stick to lotus leaf structures. Now, researchers at Penn State have developed the first nano/micro-textured highly slippery surfaces able to outperform lotus leaf-inspired liquid repellent coatings, particularly in situations where the water is in the form of vapor or tiny droplets.

Commercial fluorescence activated cell sorters have been highly successful in the past 40 years at rapidly and accurately aiding medical diagnosis and biological studies, but they are bulky and too expensive ($200,000 -$1,000,000) for many labs or doctors’ offices. Most significantly, these types of cell sorters can present biohazard concerns for operators and may damage cells or alter their properties, making them unfit for further study. To address these issues, researchers at Penn State have developed a new lab-on-a-chip cell sorting device based on acoustic waves.

An accidental discovery of a "quantum Etch-a-Sketch" that may lead to the next generation of advanced computers and quantum microchips has been made by team of scientists from Penn State University and the University of Chicago. The researchers accidentally discovered a new way of using beams of light to draw and erase quantum-mechanical circuits on topological insulators, a unique class of materials with intriguing electronic properties.

An international team of researchers, led by Penn State, has developed ultrasensitive gas sensors based on the infusion of boron atoms into the tightly bound matrix of carbon atoms known as graphene. The group is composed of researchers from six countries and includes the 2010 Noble laureate and graphene pioneer Konstantin Novoselov, and Morinobu Endo, the discoverer of carbon nanotubes.

The tiny transistor is the heart of the electronics revolution, and Penn State materials scientists have just discovered a way to give the workhorse transistor a big boost, using a new technique to incorporate vanadium oxide, one of a family of materials called functional oxides, into the device.   

  • 1 of 32