News - 2018

12/20/2018

By Walt Mills

ZIF glasses, a new family of glass, could combine the transparency of silicate glass with the nonbrittle quality of metallic glass, according to researchers at Penn State and Cambridge University, UK.

“We are sure of the transparency,” said John Mauro, professor of materials science and engineering, Penn State. “We’ll have to wait until larger samples can be made to know if it has the amazing ductility of metallic glass, but it looks promising.”

12/06/2018

Topological control of electrons means future electronic roadways are now possible.

By Walt Mills

In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of an electron beyond charge. In new work published on Dec. 7 in the journal Science, a team led by Penn State professor of physics Jun Zhu describes a way to manipulate electrons based on their energy in relation to momentum – called “valley degree of freedom.”

12/06/2018

By Walt Mills

A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date. Perovskites are minerals that are of interest as electrical insulators, semiconductors, metals or superconductors, depending on the arrangement of their atoms and electrons.

11/28/2018

When it comes to recording and modulating neurons in the brain, neuroscientists face two options: noninvasive tools with low spatiotemporal resolution, or implantable tools that are highly invasive and can only record or impact a small percentage of the brain’s neurons. Mehdi Kiani, Dorothy Quiggle Assistant Professor of Electrical Engineering at Penn State, is working to change that.

11/26/2018

By Walt Mills

A material based on a natural product of bones and citrus fruits, called citrate, provides the extra energy stem cells need to form new bone tissue, according to a team of Penn State bioengineers. The new understanding of the mechanism that allows citrate to aid in bone regeneration will help the researchers develop slow-release, biodegradable citrate-releasing scaffolds to act as bone-growth templates to speed up healing in the body.

10/05/2018

The inability to alter intrinsic piezoelectric behavior in organic polymers hampers their application in flexible, wearable and biocompatible devices, according to researchers at Penn State and North Carolina State University, but now a molecular approach can improve those piezoelectric properties.

10/01/2018

New insight into how a certain class of photovoltaic materials allows efficient conversion of sunlight into electricity could position these materials to replace traditional silicon solar cells. A study by researchers at Penn State reveals the unique properties of these inexpensive and quick-to-produce halide perovskites, information that will guide the development of next generation solar cells. The study appears September 27 in the journal Chem.

09/28/2018

There is a scrapyard in Accra, Ghana, known as "Agbogbloshie," where e-waste goes to die — at least, that is the way it has been misrepresented and misunderstood by those on the outside. Penn State faculty members DK Osseo-Asare and Yasmine Abbas have spent years working with urban miners — scrap dealers and grassroots makers in and around Agbogbloshie — to tell a more complete story and co-develop strategies for interweaving design innovation into the circular economy of West Africa.

09/26/2018

Every second counts for those with life-threatening injuries, especially when help is far away. A new grant will help Penn State researchers develop an innovative foam that helps seal wounds quickly — whether on the battlefield, in rural areas or in other isolated locations far from hospitals.

09/25/2018

In its mission to transform the way we generate, supply, transmit, store and use energy, the Energy Frontier Research Centers (EFRC), housed within the U.S. Department of Energy, has selected two projects with participation by the Penn State Department of Mechanical and Nuclear Engineering for funding.

09/25/2018

Physicists implement a version of Maxwell's famous thought experiment for reducing entropy

09/21/2018

Careful sample preparation, electron tomography and quantitative analysis of 3D models provides unique insights into the inner structure of reverse osmosis membranes widely used for salt water desalination wastewater recycling and home use, according to a team of chemical engineers.

These reverse osmosis membranes are layers of material with an active aromatic polyamide layer that allows water molecules through, but screens out 99 to 99.9 percent of the salt.

09/12/2018

Birgitt Boschitsch has earned many titles – mechanical engineer, Penn State doctoral student, bourgeoning entrepreneur. But no matter how she’s using her talents, she always remembers why she pursued engineering.

“Day-to-day, I get to work on interesting technological problems,” she said. “But there’s also a long-term societal impact that engineers can have, which is ultimately solving problems for people around the world.”

08/29/2018

The U.S. National Science Foundation (NSF) has awarded $1.8 million to a team of scientists led by John Badding, professor of chemistry, physics, and materials science and engineering at Penn State, to establish the NSF Center for Nanothread Chemistry (CNC). The center will bring together a diverse group of chemists to pioneer research on nanothreads, a new form of carbon molecule. First theoretically predicted at Penn State in 2001 and then synthesized there in 2014, the atoms of nanothreads bond together in a cage-like pattern, akin to the thinnest possible threads of diamond.

08/27/2018

A team of researchers from Penn State’s Materials Research Institute and the University of Utah has developed a wearable energy harvesting device that could generate energy from the swing of an arm while walking or jogging. The device, about the size of a wristwatch, produces enough power to run a personal health monitoring system.

08/24/2018

By Erin Cassidy Hendrick

A self-healing membrane that acts as a reverse filter, blocking small particles and letting large ones through, is the "straight out of science fiction" work of a team of Penn State mechanical engineers.

"Conventional filters, like those used to make coffee, allow small objects to pass through while keeping larger objects contained," said Birgitt Boschitsch, graduate student in mechanical engineering.

08/03/2018

The Center for Lignocellulose Structure and Formation (CLSF), an Energy Frontiers Research Center (EFRC) established by the U.S. Department of Energy (DOE) in 2009 and led by Penn State scientists, has once again had its funding renewed by the DOE for an additional four years. The DOE established ERFCs to accelerate fundamental research and scientific breakthroughs in energy-relevant areas to meet critical energy challenges of the 21st century. The CLSF, which is receiving its third round of funding, was one of only nine centers nationwide recommended for a four-year renewal.

07/06/2018

Californians do not purchase electric vehicles because they are cool, they buy EVs because they live in a warm climate. Conventional lithium-ion batteries cannot be rapidly charged at temperatures below 50 degrees Fahrenheit, but now a team of Penn State engineers has created a battery that can self-heat, allowing rapid charging regardless of the outside chill.

06/26/2018

By Walt Mills

For the first time, researchers have created a nanocomposite of ceramics with a two-dimensional material that opens the door to new designs of nanocomposites with a variety of applications, such as solid-state batteries thermoelectrics, varistors, catalysts, chemical sensors and much more.

06/13/2018

By Walt Mills

A team of Penn State researchers has developed a biomimetic nanosystem to deliver therapeutic proteins to selectively target cancerous tumors. Using a protein toxin from a plant found in the Himalayan mountains, called gelonin, the researchers caged the proteins in self-assembled metal-organic framework (MOF) nanoparticles to protect them from the body’s immune system. To enhance the longevity of the drug in the bloodstream and to selectively target the tumor, the team cloaked the MOF in a coating made from cells from the tumor itself.

05/31/2018

Diseased cells such as metastatic cancer cells have markedly different mechanical properties that can be used to improve targeted drug uptake, according to a team of researchers at Penn State.

05/31/2018

Forty-four graduate students competed for prizes in the PPG Elevator Pitch Competition held May 22, 2018 in the Millennium Science Complex. The five finalists will present their two-minute pitch during the Millennium Café on May 29 at 10 a.m.

05/16/2018

By Walt Mills

A piezoelectric ceramic foam supported by a flexible polymer support provides a 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezo composites, according to Penn State researchers.

05/16/2018

A new cover article appearing in the high-impact scientific journal Chemical Society Reviews, a publication of The Royal Society of Chemistry, details the emerging field of two-dimensional materials for next generation electronic devices and the challenges of contact engineering at the few-nanometer scale. In the review article “Contact Engineering for 2D Materials and Devices,” Saptarshi Das, assistant professor of engineering science and mechanics, Daniel Schulman, Ph.D. candidate in materials science and engineering, and Andrew Arnold, Ph.D.

05/03/2018

A team of chemists at Penn State has developed a designer’s toolkit that lets them build various levels of complexity into nanoparticles using a simple, mix-and-match process.

04/23/2018

By Walt Mills

A precise chemical-free method for etching nanoscale features on silicon wafers has been developed by a team from Penn State and Southwest Jiaotong University and Tsinghua University in China.

In standard lithography, a photosensitive film is deposited on a silicon wafer and a pattern called a mask is used to expose the film. Then, chemicals, such as KOH solutions, etch patterns into the silicon. Further steps are required to smooth out the roughened surface.

03/30/2018

By Walt Mills

A slippery rough surface (SRS) inspired by both pitcher plants and rice leaves outperforms state-of-the-art liquid-repellent surfaces in water harvesting applications, according to a team of researchers at Penn State and University of Texas at Dallas.

The team reports their work online today in Science Advances, an open-access journal published by the American Association for the Advancement of Science (AAAS).

03/21/2018

By Walt Mills

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.

03/15/2018

Lightning and volcanos both produce glass, and humans have been making glass from silicon dioxide since prehistory. Industrialization brought us boron-based glasses, polymer glasses and metallic glasses, but now an international team of researchers has developed a new family of glass based on metals and organic compounds that stacks up to the original silica in glass-forming ability.

Glass-forming ability is the ability of a liquid to avoid crystallization during cooling.

03/13/2018

Creating enough nanovesicles to inexpensively serve as a drug delivery system may be as simple as putting the cells through a sieve, according to an international team of researchers who used mouse autologous — their own — immune cells to create large amounts of fillable nanovesicles to deliver drugs to tumors in mice.

Nanovesicles are tiny sacs released by cells that carry chemical messages between cells. These nanovesicles are natural delivery vehicle and useful in drug delivery for cancer treatment.

02/26/2018

By Walt Mills

In two recent publications, teams of researchers led by Penn State provide new understanding of why synthetic two-dimensional materials often perform orders of magnitude worse than predicted, and how to improve their performance in future electronics, photonics, and memory storage applications.

02/13/2018

By Walt Mills

Since the discovery of the remarkable properties of graphene, scientists have increasingly focused research on the many other two-dimensional materials possible, both those found in nature and concocted in the lab. However, growing high quality, crystalline 2D materials at scale has proven a significant challenge. 

02/06/2018

By Walt Mills

The most economical way to kill the bacteria that cause common food-borne illnesses – mostly caused by Salmonella enterica – is heat, but the mechanisms that kill Salmonella at lower temperatures were not fully understood until now, according to a team of researchers.

 Bacteria can develop ways to cope with heat shock, so it is important to develop a complete understanding of how heat kills them.

01/22/2018

Combining two different polymer forms can switch manufacturing of silicone parts from molding, casting and spin coating of simple forms to 3-D printing of complex geometries with better mechanical characteristics and better biological adhesion, according to a team of Penn State researchers.

01/12/2018

For the first time, physicists have built a two-dimensional experimental system that allows them to study the physical properties of materials that were theorized to exist only in four-dimensional space.

01/12/2018

A team of researchers from Penn State placed first at the Materials Research Society (MRS) iMatSci Innovators competition at the MRS 2017 Fall meeting in Boston. Their technology, called “LESS,” reduces the amount of flush volume required to remove solids and residue from toilet bowls by 90 percent and could improve hygiene and save significant water resources in water-scarce environments.

01/02/2018

Providing safer drinking water to those in need may be a little easier. According to Penn State researchers, a new desalination technique is able to remove salt from water using less energy than previous methods.

“Globally, there is reduced access to fresh water,” said Bruce Logan, Evan Pugh University Professor in Engineering and the Stan and Flora Kappe Professor of Environmental Engineering. “More and more, the waters that are being used are impaired, either due to salt or other contaminants, so we are seeing an increasing need to rely on less optimal water sources.”

Share