Publications

Publications 

Google Scholar Citations Search of publications by Gopalan group


Theses

  1. Coupled Phenomena in domains and domain walls in complex polar oxides, Shiming Lei, Ph.D. Dissertation (2017).

  2. Semiconductor fabrics and single crystal fibers for optoelectronic applications, Xiaoyu Ji,  Ph.D. Dissertation (2017).

  3. Strain-induced phenomenon in complex oxide thin films, Ryan C. Haislmaier, Ph.D. dissertation, (2016).

  4. Topochemical synthesis & characterization of octahedral rotation induced noncentrosymmetric layered perovskites, Arnab SenGupta, Ph.D. dissertation, (2016).

  5. The symmetry and antisymmetry of distortions, Brian K. VanLeeuwen, Ph.D. dissertation, (2015).

  6. The emergent monoclinic phase in KNbO3 discovered using optical second harmonic generation, Jessica Leung, Masters thesis, (2013).

  7. Phase transitions and domain structures in multiferroics, Eftihia Vlahos, Ph.D. dissertation, (2011).

  8. Optoelectronic materials for sub-wavelength imaging and laser beam manipulation, Mahesh Krishnamurthy, Ph.D. dissertation , (2010).

  9. Spin-charge lattice coupling in multiferroics and strained ferroelectrics, Amit Kumar, Ph.D. dissertation, (2009).

  10. Probing local structure and dynamics of ferroelectric domain walls using nonlinear optics and scanning probe microscopy, V. Aravind,  PhD dissertation (2009).

  11. Nanoscale probing and photonic applications of ferroelectric domain walls, L. Tian, PhD dissertation (2006). PDF

  12. High dynamic range, long-arm autocorrelation measurements of ultrashort pulses used in femtosecond laser micromachining, E. Vlahos, Masters thesis (2005). PDF

  13. Local structure and shaping of domain walls for photonic applications, D. Scrymgeour,  PhD dissertation (2004). PDF

  14. Optical, electrical and elastic properties of domain walls in lithium niobate and lithium tantalate, S. Kim, PhD dissertation (2003). PDF

  15. Structure-optical property relations in proton exchanged waveguides in stoichiometric lithium niobate, C. Lin, Masters Thesis (2003).


Reviews

  1. Ferroelectric Materials, in The Handbook of Photonics, Venkatraman Gopalan, Kenneth L. Schepler, Volkmar Dielorf and Ivan Biaggio, Second Edition, Chapter 6, pp 1-53 PDF

  2. Crystal Growth, Characterization, and Domain Studies in Lithium Niobate and Lithium Tantalate Ferroelectrics, in The Handbook of Advanced Electronic and Photonic Materials and Devices, Venkatraman Gopalan, Norman A. Sanford, J. A. Aust, K. Kitamura and Y. Furukawa, Volume 4, Chapter 2, pp 58-112 PDF

  3. Defect - Domain Wall Interactions in Trigonal Ferroelectrics, in The Annual Review of Materials Research, Venkatraman Gopalan, Volkmar Dierolf and David A. Scrymgeour, Annu. Rev. Mater. Res. (2007). 37:449-89 PDF

  4. Probing Ferroelectrics using Optical Second Harmonic Generation, S. A. Denev, T. T. A. Lummen, E. Vlahos, V. Gopalan, J. Amer. Cer. Soc. 94[9], 2699-2727 (2011). article

  5. Templated Chemically Deposited Semiconductor Optical Fiber Materials, Justin R. Sparks, Pier J.A. Sazio, Venkatraman Gopalan and John V. Badding, Annual Review of Materials Research 43: 527-557 (2013). article

  6. Elastic strain engineering of ferroic oxides, Darrell G. Schlom, Long-Qing Chen, Craig J. Fennie, Venkatraman Gopalan, David A. Muller, Xiaoqing Pan, Ramamoorthy Ramesh and Reinhard Uecker, MRS Bulletin 39, 118 (2014). article


Publications 

2018

  1. Discovering minimum energy pathways via distortion symmetry groups, Jason M. Munro, Hirofumi Akamatsu, Haricharan Padmanabhan, Vincent S. Liu, Yin Shi, Long-Qing Chen, Brian K. VanLeeuwen, Ismaila Dabo, and Venkatraman Gopalan, Phys. Rev. B. (2018). doi: https://doi.org/10.1103/PhysRevB.98.085107

  2. Light-activated gigahertz ferroelectric domain dynamics, Hirofumi Akamatsu, Yakun Yuan, Vladimir A. Stoica, Greg Stone, Tiannan Yang, Zijian Hong, Shiming Lei, Yi Zhu, Ryan C. Haislmaier, John W. Freeland, Long-Qing Chen, Haidan Wen, and Venkatraman Gopalan, Physical Review Letters 120, 096101 (2018), doi:https://doi.org/10.1103/PhysRevLett.120.096101

  3. Observation of quasi-two-dimensional polar domains and ferroelastic switching in a metal Ca3Ru2O7, Shiming Lei, Mingqiang Gu, Danilo Puggioni, Greg Stone, Jin Peng, Jianjian Ge, Yu Wang,Baoming Wang, Yakun Yuan, Ke Wang, Zhiqiang Mao, James M. Rondinelli, Venkatraman Gopalan, Nano Letters (2018). doi: 10.1021/acs.nanolett.8b00633

  4. Atomic scale measurement of polar entropy, D. Mukherjee, S. Prokhorenko, L. Miao, K. Wang, E. Bousquet, V. Gopalan, N. Alem, arXiv: 1807.06525 [cond-mat.mtrl-sci]

  5. Optical creation of an oxide supercrystal with three-dimensional nanoscale periodicity, V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L-Q. Chen, H. Wen, V. Gopalan, J. W. Freeland, in review Nature Materials (2018).

  6. Linear and nonlinear optical probe of the ferroelectric-like phase transition in a polar metal, LiOsO3, H. Padmanabhan, Y. Park, D. Puggioni, Y. Yuan, Y. Cao, L. Gasparov, Y. Shi, J. Chakhalian, J. M. Rondinelli, V. Gopalan, Applied Physics Letters, (2018).https://doi.org/10.1063/1.5042769

  7. DiSPy: Implementation of Distortion Symmetry for the Nudged Elastic Band Method, Jason M. Munro, Vincent S. Liu, Venkatraman Gopalan, and Ismaila Dabo, arXiv arXiv:1810.01911v1 [cond-mat.mtrl-sci]

  8. Ultrafast quasiparticle dynamics in correlated semimetal, Ca3Ru2O7, Y. Yuan, P. Kissin, D. Puggioni, K. Cremin, S. Lei, Y. Wang, Z. Mao, J. M. Rondinelli, R. D. Averitt, V. Gopalan, in review Physical Review Letters (2018).

  9. Atomic and electronic structure of domain walls in a polar metal, G. Stone, D. Poggioni, S. Lei, M. Gu, K. Wang, Y. Wang, J. Ge, X-Z. Lu, Z. Mao, J. M. Rondinelli, V. Gopalan, in review, Physical Review Letters (2018).

  10. Spatio-temporal symmetry – crystallographic point groups with time translations and time inversion, V. S. Liu, B. K. VanLeeuwen, J. M. Munro, H. Padmanabhan, I. Dabo, V. Gopalan, D. B. Litvin, Acta Crystallographica A, https://doi.org/10.1107/S2053273318004667

  11. Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films, J. W. Guo, P. S. Wang, Y. Yuan, Q. He, J. L. Lu, T. Z. Chen, S. Z. Yang, Y. J. Wang, R. Erni, M. D. Rossell, V. Gopalan, H. J. Xiang, Y. Tokura, and P. Yu, Physical Review B. (2018). doi:https://doi.org/10.1103/PhysRevB.97.235135

  12. Rotomagnetic coupling in fine-grained multiferroic BiFeO3: theory and experiment, Anna N. Morozovska, Eugene A. Eliseev, Maya D. Glinchuk, Olena M. Fesenko, Vladimir V. Shvartsman, Venkatraman Gopalan, Maxim V. Silibin, and Dmitry V. Karpinsky,  Phys. Rev. B. (2018). doi: https://doi.org/10.1103/PhysRevB.97.134115

  13. Artificial two-dimensional polar metal at room temperature, Yanwei Cao, Zhen Wang, Se Young Park, Yakun Yuan, Xiaoran Liu, Sergey M. Nikitin, Hirofumi Akamatsu, M. Kareev, S. Middey, D. Meyers, P. Thompson, P.J. Ryan, Padraic Shafer, A. N’Diaye, E. Arenholz, Venkatraman Gopalan, Yimei Zhu, Karin M. Rabe & J. Chakhalian, Nature Communications, (2018). doi: 10.1038/s41467-018-03964-9

  14. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics, Xiaoyu Ji, Hiu Yan Cheng, Alex J. Grede, Alex Molina, Disha Talreja, Suzanne E. Mohney, Noel C. Giebink, John V. Badding, and Venkatraman Gopalan, APL Materials (2018). https://doi.org/10.1063/1.5020814

  15. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron–Phonon Coupling, Burak Guzelturk, Rebecca A. Belisle, Matthew D. Smith, Karsten Bruening, Rohit Prasanna, Yakun Yuan, Venkatraman Gopalan, Christopher J. Tassone, Hemamala I. Karunadasa, Michael D. McGehee, and Aaron M. Lindenberg, Advanced Materials 30, 1704737, (2018). doi: 10.1002/adma.201704737 

  16. Continuously Tuning Epitaxial Strains by Thermal Mismatch, Lei Zhang,Yakun Yuan, Jason Lapano, Matthew Brahlek, Shiming Lei, Bernd Kabius, Venkatraman Gopalan, and Roman Engel-Herbert, ACS Nano 12, 1306−1312 , (2018).  doi:10.1021/acsnano.7b07539

  17. YCrWO6: Polar and Magnetic Oxide with CaTa2O6‐Related Structure, Sun Woo Kim, Thomas J. Emge, Zheng Deng, Ritesh Uppuluri, Liam Collins, Saul H. Lapidus, Carlo U. Segre, Mark Croft, Changqing Jin, Venkatraman Gopalan, Sergei V. Kalinin,
 and Martha Greenblatt, Chemistry of Materials (2018), 30, 1045−1054, doi: 10.1021/acs.chemmater.7b04941

  18. Random anion distribution in MSxSe2−x (M = Mo, W) crystals and nanosheets, Minh An T. Nguyen, Arnab Sen Gupta, Jacob Shevrin, Hirofumi Akamatsu, Pengtao Xu, Zhong Lin, Ke Wang, Jun Zhu, Venkatraman Gopalan, Mauricio Terrones and Thomas E. Mallouk, Royal Society of Chemistry Advances, doi: 10.1039/C8RA01497C

  19. Universal relationship betweenferroelectric transition temperature and tolerance factor in n=2 Ruddlesden-Popper phases, S. Yoshida, H. Akamatsu, R. Tsuji, O. Hernandez, H. Padmanabhan, A S. Gupta, A. S. Gibbs, K. Mibu, S. Murai, J. M. Rondinelli, V. Gopalan, K. Tanaka, K. Fujita, in review J. American Chemical Society (2018).https://pubs.acs.org/doi/10.1021/jacs.8b07998

  20. Ferroelectric Sr3Zr2O7: Competition between Hybrid Improper Ferroelectric and Antiferroelectric Mechanisms, Suguru Yoshida, Koji Fujita,* Hirofumi Akamatsu, Olivier Hernandez, Arnab Sen Gupta, Forrest G. Brown, Haricharan Padmanabhan, Alexandra S. Gibbs, Toshihiro Kuge, Ryosuke Tsuji, Shunsuke Murai, James M. Rondinelli, Venkatraman Gopalan, and Katsuhisa Tanaka, Advanced Functional Materials (2018), 28, 1801856, doi: 10.1002/adfm.201801856

  21. Theory-guided synthesis of a metastable lead-free piezoelectric polymorph, Lauren M. Garten, Shyam Dwaraknath, Julian Walker, John S. Mangum, Paul F. Ndione, Yoonsang Park, Daniel A. Beaton, Venkataraman Gopalan, Brian P. Gorman, Laura T. Schelhas, Michael F. Toney, Susan Trolier-McKinstry, Kristin Perrson, David S. Ginley, Advanced Materials (2018). https://doi.org/10.1002/adma.201800559

2017

  1. Spatio-Temporal Symmetry –Point Groups with time Translations, Haricharan Padmanabhan, Maggie L Kingsland, Jason M Munro, Daniel B Litvin, Venkatraman Gopalan, Symmetry, 9, 187 (2017). doi:10.3390/sym9090187

  2. Emergent Low‐Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO3 Bulk Crystals, Tom TA Lummen, J Leung, Amit Kumar, X Wu, Y Ren, Brian K VanLeeuwen, Ryan C Haislmaier, Martin Holt, Keji Lai, Sergei V Kalinin, Venkatraman Gopalan, Advanced Materials, 29, (2017); doi: 10.1002/adma.201700530

  3. Magnetostriction-Polarization Coupling in Multiferroic Mn2MnWO6, Man-Rong Li, Emma McCabe, Peter W. Stephens, Mark Croft, Liam F. Collins, Sergei V. Kalinin, Zheng Deng, Maria Retuerto, Arnab Sen Gupta, Haricharan Padmanabhan, Venkatraman Gopalan, Christoph P. Grams, Joachim Hemberger, Fabio Orlandi, Pascal Manuel, Wen-Min Li, Chang-Qing Jin, Dave Walker, Martha Greenblatt, Nature Communications, (2017). 8: 2037 | doi: 10.1038/s41467-017-02003-3

  4. Sub-wavelength modulation of  chi(2) optical nonlinearity in organic thin films, Y. Yan, Y. Yuan, B. Wang, V. Gopalan, N. C. Giebink, Nature Communications, doi: 10.1038 /ncomms14269 (2017).

  5. A silicon microwire under a three-dimensional anisotropic tensile stress, Xiaoyu Ji, Nicolas Poilvert, Wenjun Liu, Yihuang Xiong, Hiu Yan Cheng, John V Badding, Ismaila Dabo, Venkatraman Gopalan, Appl. Phys. Lett. 110, 091911 (2017); doi: http://dx.doi.org/10.1063/1.4977852

  6. Polar Oxides without Inversion Symmetry through Vacancy and Chemical Order, Joshua Young, Eun Ju Moon, Debangshu Mukherjee, Greg Stone, Venkatraman Gopalan, Nasim Alem, Steven J May, James M Rondinelli, J. Am. Chem. Soc. 139 (7), pp 2833–2841 (2017). doi10.1021/jacs.6b10697

  7. A (II) GeTeO6 (A= Mn, Cd, Pb): Non-Centrosymmetric Layered Tellurates with PbSb2O6-Related Structure, Sun Woo Kim, Zheng Deng, Shuang Yu, Haricharan Padmanabhan, Weiguo Zhang, Venkatraman Gopalan, Changqing Jin, Martha Greenblatt, Inorganic Chemistry, 56, (2017), doi: 10.1021/acs.inorgchem.7b01013

  8. A Comprehensive Thermodynamic Potential and Phase Diagram for Multiferroic Bismuth Ferrite, D.V. Karpinsky, I.O. Troyanchuk, S.A. Gavrilov, M.V. Silibin, E.A. Eliseev, M.D. Glinchuk, Dr. Fei Xue, V. Gopalan, L.-Q. Chen, A. Franz, A. N. Morozovska, npj Computational Materials 3, 1(2017). doi:10.1038/s41524-017-0021-3

  9. High-Quality LaVO3 Films as Solar Energy Conversion Material, Hai-Tian Zhang, Matthew J Brahlek, Xiaoyu Ji, Shiming Lei, Jason Lapano, John W Freeland, Venkatraman Gopalan, Roman Engel-Herbert, ACS Applied Materials & Interfaces, 9 (14), pp 12556–12562(2017). doi: 10.1021/acsami.6b16007

  10. A Listing of Crystallographic Point Groups in Space and Time, Haricharan Padmanabhan, Maggie L Kingsland, Jason M Munro, Daniel B Litvin, Venkatraman Gopalan, arXiv preprint arXiv:1701.04088

2016

    1. Complex Oxides: Creative Tension in Layered Crystals, V. Gopalan, R. Engel-Herbert, Nature Materials, News and Views, (2016). doi:10.1038/nmat4662

    2. Polar Metals by Geometric Design, T. H. Kim, D. Puggioni, Y. Yuan, L. Xie,  H. Zhou, N. Campbell, P. J. Ryan, Y. Choi, J.-W. Kim, J. R. Patzner, S. Rzchowski, X. Q.Pan, V. Gopalan, J. M. Rondinelli, C-B. Eom, Nature, 533, 68-72 (2016). doi:10.1038/nature17628

    3. Atomic-scale imaging of competing polar states in a Ruddlesden-Popper layered oxide, G. Stone, C. Ophus, T. Birol, J. Ciston, C-H. Lee, K. Wang, C. J. Fennie, D. G. Schlom, N. Alem, V. Gopalan, Nature Communications,  7, article 12572 (2016). doi:10.1038/ncomms12572

    4. Competing structural instabilities in the Ruddlesden-Popper derivatives HRTiO4 (R=Rare earths): Oxygen Octahedral rotations inducing noncentrosymmetry and layer sliding retaining centrosymmetry, A. SenGupta, H. Akamatsu, F. G. Brown, Minh An T. Nguyen, M. E. Strayer, S. Lapidus, S. Yoshida, K. Fujita, K. Tanaka, I. Tanaka, T. E. Mallouk, V. Gopalan, ACS Chemistry of Materials, (2016). http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b04103 

    5. PbMn(IV)TeO6: A New Noncentrosymmetric Layered Honeycomb Magnetic Oxide, Kim, Sun Woo; Deng, Zheng; Li, Man-Rong; Gupta, Arnab; Akamatsu, Hirofumi; Gopalan, Venkatraman; Greenblatt, Martha, Inorganic Chemistry, 55, 1333-1338 (2016). 10.1021/acs.inorgchem.5b02677

    6. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R= rare earths), A. Sen Gupta, H. Akamatsu, M. E. Strayer, S. Lei, T. Kuge, K. Fujita, C. dela Cruz, A. Togo, I. Tanaka, K. Tanaka, T. E. Mallouk, and V. Gopalan, Advanced Electronic Materials, 10.1002/aelm.201500196

    7. Emergent non-centrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion-Jacobson phase layer perovskites, M. E. Strayer, A. Sen Gupta, H. Akamatsu, S. Lei, N. A. Benedek, V. Gopalan, and T. E. Mallouk,Advanced Functional Materials, 26, 1930-1937 (2016). DOI: 10.1002/adfm.201504046 

    8. Imprinting of Local Metallic States into VO2 with Ultraviolet Light, Hai-Tian Zhang,
 Lu Guo,
 Greg Stone,   Lei Zhang,
Yuan-Xia Zheng,
Eugene Freeman,
Derek W. Keefer,
Subhasis Chaudhuri,
Hanjong Paik,
Jarrett A. Moyer,
Michael Barth,
Darrell G. Schlom,
John V. Badding,
Suman Datta,
Venkatraman Gopalan,
Roman Engel-Herbert, Advanced Functional Materials, (2016) 10.1002/adfm.201601890.

    9. Unleashing strain induced ferroelectricity in complex oxide thin films via precise stoichiometry control, R. C. Haislmaier, E. D. Grimley, M. D. Biegalski, J. M. Lebeau, S. Trolier-McKinstry, V. Gopalan, R. E. Herbert, Advanced Functional Materials, (2016). 10.1002/adfm.201602767

    10. Single Crystal Germanium Core Optoelectronic Fibers, Xiaoyu Ji, Ryan L. Page, Subhasis Chaudhuri, Wenjun Liu, Shih-Ying Yu, Suzanne E. Mohney, John V. Badding, and Venkatraman Gopalan, Advanced Optical Materials, (2016). http://dx.doi.org/10.1002/adom.201600592;  Frontispiece Imagehttp://onlinelibrary.wiley.com/doi/10.1002/adom.201770004/full

    11. Single-Crystal Silicon Optical Fiber by Direct Laser Crystallization, X. Ji, S. Lei, S-Y. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, V. Gopalan,ACS Photonics, (2016).http://DOI: 10.1021/acsphotonics.6b00584

    12. Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage, Jia-Mian Hu, Tiannan Yang, Kasra Momeni, Xiaoxing Cheng, Lei Chen, Shiming Lei, Shujun Zhang, Susan Trolier-McKinstry, Venkatraman Gopalan, Gregory P Carman, Cewen Nan, Long-Qing Chen, Nano Letters, DOI: 10.1021/acs.nanolett.5b05046

    13. Unprecedented low-temperature cationic rearrangement in a bulk metal oxide, Man-Rong Li, Maria Retuerto, Peter W. Stephens, Mark Croft, Santu Baidya, Tanusri Saha-Dasgupta, Denis Sheptyakov, Vladimir Pomjakushin, Zheng Deng, Hirofumi Akamatsu, Venkatraman Gopalan, Javier Sánchez-Benítez, Felix O. Saouma, Joon I. Jang, David Walker, Martha Greenblatt, Angewandte Chemie, (2016). 10.1002/ange.201511360

    14. Crystalline Silicon Optical Fibers with Low Optical Loss, Subhasis Chaudhuri, Justin R Sparks, Xiaoyu Ji, Mahesh Krishnamurthi, Li Shen, Noel Healy, Anna C Peacock, Venkatraman Gopalan, John V Badding,  ACS Photonics, 3 (3), 378–384, (2016).DOI: 10.1021/acsphotonics.5b00434

    15. Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO3, Ran Gao, Yongqi Dong, Han Xu, Hua Zhou, Yakun Yuan, Venkatraman Gopalan, Chen Gao, Dillon D Fong, Zuhuang Chen, Zhenlin Luo, Lane W Martin, ACS Appl. Mater. Interfaces, 2016, 8 (23), pp 14871–14878 DOI: 10.1021/acsami.6b02864

    16. Stoichiometry as key to strain-enabled ferroelectricity in compressively strained SrTiO3 thin films, Ryan C. Haislmaier, Roman Engel-Herbert & Venkatraman Gopalan, Appl. Phys. Lett. 109, 032901 (2016). http://dx.doi.org/10.1063/1.4959077

    17. Relaxor Ferroelectric Behavior in Barium Strontium Titanate, L. M. Garten, M. Burch, A. Sen Gupta, R. Haislmaier, P. Lam, D. Harris, V. Gopalan, E.C. Dickey, J.-P. Maria, and S. Trolier-McKinstry, Journal of the American Ceramics Society (2016). DOI: 10.1111/jace.14109

    18. Depinning of the ferroelectric domain wall in congruent LiNbO3, D. Lee, V. Gopalan, S. R. Phillpot, Appl. Phys. Lett. 109, 082905 (2016). http://dx.doi.org/10.1063/1.4961614

    19. Quantitative lateral and vertical piezoresponse force microscopy on a PbTiO3 single crystal, S. Lei, T-Y. Koo, W. Cao, E. A. Eliseev, A. N. Morozovska, S-W. Cheong, V. Gopalan, J. Appl. Phys. 120, 124106 (2016). http://dx.doi.org/10.1063/1.4963750

    20. Chemistry, growth kinetics, and epitaxial stabilization of Sn2+ in Sn-doped SrTiO3 using (CH3)6Sn2 tin precursor, Tianqi Wang, Krishna Chaitanya Pitike, Yakun Yuan, Serge M. Nakhmanson, Venkatraman Gopalan, and Bharat Jalan, APL Materials, http://aip.scitation.org/doi/full/10.1063/1.4972995

    21. Aberration corrected STEM imaging of domains walls in LiNbO3, D. Mukherjee, G. Stone, K. Wang, V. Gopalan, N. Alem, Proceedings of Microscopy and Microanalysis, 22, Supplement S3, 914-915 (2016). http://dx.doi.org/10.1017/S1431927616005419

    22. Design of next generation mid-infrared multimaterial fiber optics, X. Ji, R. L. Page, V. Gopalan, Proceedings of the COMSOL conference, Boston, October (2016).

     

    2015

    1. Antisymmetry of Distortions, Brian K. VanLeeuwen, V. Gopalan, Nature Communications, 6, 8818 (2015) doi:10.1038/ncomms9818

    2. Affine and Euclidean normalizers of the subperiodic groups, B. K. VanLeeuwen, P. V. De Jesus, D. B. Litvin, and V. Gopalan,Acta Cryst. A71, 150-160 (2015). doi: 10.1107/S2053273314024395

    3. Correlated metals as transparent conductors, Lei Zhang, Yuanjun Zhou, Lu Guo, Weiwei Zhao, Anna Barnes, Haitian Zhang, Craig Eaton, Hamna F. Haneef, Nikolas J. Podraza, Moses H. W. Chan, Venkatraman Gopalan, Karin M. Rabe, Roman Engel-Herbert, Nature Materials, (2015). doi:10.1038/nmat4493

    4. A labile hydride strategy to synthesize heavily nitrided BaTiO3, akeshi Yajima, Fumitaka Takeiri, Kohei Aidzu, Hirofumi Akamatsu, Koji Fujita, Masatoshi Ohkura, Wataru Yoshimune, Shiming Lei, Venkatraman Gopalan, Katsuhisa Tanaka, C. M. Brown, Mark A. Green, Takafumi Yamamoto, Yoji Kobayashi, and Hiroshi Kageyama, Nature Chemistry, 7, 1017-1023 (2015). doi:10.1038/nchem.2370

    5. Linear antidistortive-antiferromagnetic effect in multiferroics: physical manifestations, A. N. Morozovska, V. V. Khist, M. D. Glinchuk, V. Gopalan, E. A. Eliseev, Phys. Rev. B. 92, 054421 (2015). 10.1103/PhysRevB.92.054421

    6. Mn2FeWO6: a new Ni3TeO6-type polar and magnetic oxide, M-R. Li, M. Croft, P. W. Stephens, M. Ye, D. Vanderbilt, M. Retuerto, Z. Deng, C. P. Grams, J. Hemberger, J. Hadermann, W-M. Li, C-Q. Jin, F. O. Saouma, J. I. Jang, H. Akamatsu, V. Gopalan, D. Walker, M. Greenblatt, Advanced Materials, 28, 2098, (2015).  doi: 10.1002/adma.201405244

    7. Rotomagnetic coupling influence on the magnetic properties of antiferrodistortive antiferromagnets, E. A. Eliseev, M. D. Glinchuk, V. Gopalan, A. N. Morozovska, Journal of Applied Physics, 118, 144101 (2015). http://dx.doi.org/10.1063/1.4932211

    8. Influence of interface coherency on ferroelectric switching of superlattice BaTiO3/SrTiO3, P. Wu, X. Ma, Y. Li, C-B. Eom, D. G. Schlom, V. Gopalan, L-Q. Chen, Appl. Phys. Lett. 107, 122906 (2015). http://dx.doi.org/10.1063/1.4931129

    9. A topological approach to creating any pulli kolam, an artform from southern India, V. Gopalan, B. VanLeeuwen, Forma 30, 35-41 (2015).  http://arxiv.org/abs/1503.02130

    2014

      1. Double antisymmetry and the rotation-reversal space groups, B. K. VanLeeuwen, V. Gopalan and D. B. Litvin, Acta Cryst. A 70, 24 (2014). article

      2. Elastic strain engineering of ferroic oxides, Darrell G. Schlom, Long-Qing Chen, Craig J. Fennie, Venkatraman Gopalan, David A. Muller, Xiaoqing Pan, Ramamoorthy Ramesh and Reinhard Uecker, MRS Bulletin 39, 118 (2014). article

      3. Thermotropic phase boundaries in classic ferroelectrics, Tom T.A. Lummen, Yijia Gu, Jianjun Wang, Shiming Lei, Fei Xue, Amit Kumar, Andrew T. Barnes, Eftihia Barnes, Sava Denev, Alex Belianinov, Martin Holt, Anna N. Morozovska, Sergei V. Kalinin, Long-Qing Chen & Venkatraman Gopalan, Nature Communications 5:3172 (2014). article

      4. Inversion symmetry breaking by oxygen octahedral rotations in Ruddlesden-Popper NaRTiO4 family, H. Akamatsu, K. Fujita, T. Kuge, A. S. Gupta, A. Togo, S. Lei, F. Xue, G. Stone, J. M. Rondinelli, L. Q. Chen, I. Tanaka, V. Gopalan, K. Tanaka, Phys. Rev. Lett.112, 187602 (2014). article

      5. Mid-infrared spectroscopic imaging enabled by an array of Ge-filled waveguides in a microstructured optical fiber probe, X. Ji, B.G. Zhang, M. Krishnamurthi, J. Badding, V. Gopalan, Optics Express 22, 28459-28466 (2014). article

      6. Piezoelectric enhancement of (PbTiO3)m/(BaTiO3)n ferroelectric superlattices through domain engineering, L. Hong, P. P. Wu, Y. L. Li, V. Gopalan, C. B. Eom, D. G. Schlom, L. Q.Chen, Phys. Rev. B. 90, 174111 (2014). article

      7. Monoclinic phase arising across thermal inter-ferroelectric phase transitions, Yijia Gu, Fei Xue, Shiming Lei, Tom T. A. Lummen, Jianjun Wang, Venkatraman Gopalan, and Long-Qing Chen, Phys. Rev. B. 90, 024104 (2014). article

      8. Crystallographic data of double antisymmetry space groups, M. Huang, B. K. VanLeeuwen, D. B. Litvin, V. Gopalan, Acta Crystallographica A70, 373-381 (2014). article

      9. Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations, Yijia Gu, Menglei Li, Anna N. Morozovska, Yi Wang, Eugene A. Eliseev, V. Gopalan, and Long-Qing Chen, Phys. Rev. B. 89, 174111 (2014). article

      10. Synchronized charged oscillations in correlated electron systems, N. Shukla, A.Parihar, E. Freeman, H. Paik, G. Stone, V.Narayanan, H. Wen, Z. Cai, V. Gopalan, R. Engel-Herbert, D.G. Schlom, A. K. Raychowdhury, S. Datta, Scientific Reports 4, 4964 (2014). article

      11. Electric-field induced ferromagnetic phase in paraelectric antiferromagnets, Maya D. Glinchuk, Eugene A. Eliseev, Yijia Gu, Long-Qing Chen, Venkatraman Gopalan, and Anna N. Morozovska, Phys. Rev. B 89, 014112 . article

      12. Reinvestigation of Electric Field Induced Optical Activity in alpha-Quartz: Application of a Polarimeter with Four Photoelastic Modulators, A. SenGupta, Oriol Arteaga, Ryan Haislmaier, Bart Kahr, Venkatraman Gopalan, Chirality 26, 430-433 (2014) DOI: 10.1002/chir.22262.

      13. Reply to “Comment on ‘Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180 degree ferroelectric domain wall, S. Lei, E. A. Eliseev, A. N. Morozovska, R. C. Haislmaier, T. T. A. Lummen, W. Cao, S. V. Kalinin, V. Gopalan, Phys. Rev. B, 89, 226102 (2014). Doi: 10.1103/PhysRevB.89.226102

      2013

      1. Templated Chemically Deposited Semiconductor Optical Fiber Materials, Justin R. Sparks, Pier J.A. Sazio, Venkatraman Gopalan and John V. Badding, Annual Review of Materials Research 43: 527-557 (2013). article 

      2. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics, Che-Hui Lee, Nathan D. Orloff, Turan Birol, Ye Zhu, Veronica Goian, Eduard Rocas, Ryan Haislmaier, Eftihia Vlahos, Julia A. Mundy, Lena F. Kourkoutis, Yuefeng Nie, Michael D. Biegalski, Jingshu Zhang, Margitta Bernhagen, Nicole A. Benedek, Yongsam Kim, Joel D. Brock, Reinhard Uecker, X. X. Xi, Venkatraman Gopalan, Dmitry Nuzhnyy, Stanislav Kamba, David A. Muller, Ichiro Takeuchi, James C. Booth, Craig J. Fennie & Darrell G. Schlom, Nature 502, 532− 536(2013). article

      3. Silicon p-i-n Junction Fibers, Rongrui He, Todd D. Day, Mahesh Krishnamurthi, Justin R. Sparks, Pier J. A. Sazio, Venkatraman Gopalan andJohn V. Badding, Advanced Materials 25, 1461, (2013). article

      4. Large nonlinear optical coefficients in pseudo-tetragonal BiFeO3 thin films, Ryan C. Haislmaier, Nikolas J. Podraza, Sava Denev, Alex Melville, Darrell G. Schlom and Venkatraman Gopalan,  Appl. Phys. Lett. 103, 031906 (2013). article

      5. Quantification of octahedral rotations in strained LaAlO3 films via synchrotron x-ray diffraction, R. L. Johnson-Wilke, D. Marincel, S. Zhu, M. P. Warusawithana, A. Hatt, J. Sayre, K. T. Delaney, R. Engel-Herbert, C. M. Schleputz, J.-W. Kim, V. Gopalan, N. A. Spaldin, D. G. Schlom, P. J. Ryan, and S. Trolier-McKinstry,  Phys. Rev. B 88, 174101 (2013). article

      6. Structural and electronic recovery pathways of a photoexcited ultrathin VO2 film, Haidan Wen, Lu Guo, Eftihia Barnes, June Hyuk Lee, Donald A. Walko, Richard D. Schaller, Jarrett A. Moyer, Rajiv Misra, Yuelin Li, Eric M. Dufresne, Darrell G. Schlom, Venkatraman Gopalan, and John W. Freeland,  Phys. Rev. B 88, 165424 (2013). article

      7. Low-symmetry monoclinic ferroelectric phase stabilized by oxygen octahedra rotations in strained EuxSr1-xTiO3 thin films, Anna N. Morozovska, Yijia Gu, Victoria V. Khist, Maya D. Glinchuk, Long-Qing Chen, Venkatraman Gopalan, and Eugene A. Eliseev, Phys. Rev. B 87, 134102 (2013). article

      8. Universal emergence of spatially modulated structures induced by flexoantiferrodistortive coupling in multiferroics, Eugene A. Eliseev, Sergei V. Kalinin, Yijia Gu, Maya D. Glinchuk, Victoria Khist, Albina Borisevich, Venkatraman Gopalan, Long-Qing Chen, and Anna N. Morozovska, Phys. Rev. B 88, 224105 (2013). article

      9. Effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial SrTiO3 thin films on DyScO3 substrates, Che-Hui Lee, Volodymyr Skoromets, Michael D. Biegalski, Shiming Lei, Ryan Haislmaier, Margitta Bernhagen, Reinhard Uecker, Xiaoxing Xi, Venkatraman Gopalan, Xavier Marti, Stanislav Kamba, Petr Kuze and Darrell G. Schlom, Appl. Phys. Lett. 102, 082905 (2013). article

      10. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide, Eugene Freeman, Greg Stone, Nikhil Shukla, Hanjong Paik, Jarrett A. Moyer, Zhonghou Cai, Haidan Wen, Roman Engel-Herbert, Darrell G. Schlom, Venkatraman Gopalan and Suman Datta,  Appl. Phys. Lett. 103, 263109 (2013). article

      11. Characterization of full set of material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample, S. Li, L. Zheng, W. Jiang, R. Sahul, V. Gopalan, W. Cao, J. Appl. Phys., 114, 104505 (2013). http://dx.doi.org/10.1063/1.4821107

      2012

      1. Integration of GHz Bandwidth Semiconductor Devices inside Microstructured Optical Fibers, R. He, P. J. A. Sazio, N. Healy, A. C. Peacock, M. Krishnamurthi, V. Gopalan, J. V. Badding, Nature Photonics, 6, 174-179 2012.article

      2. Confined High Pressure Chemical Deposition of Amorphous Hydrogenated Silicon, Neil F. Baril, Rongrui He, Todd D. Day, Justin R. Sparks, Banafsheh Keshavarzi, Mahesh Krishnamurthi, Ali Borhan, V. Gopalan, Anna C. Peacock, Noel Healy, Pier J.A. Sazio, John V. Badding, J. Am. Chem. Soc. 134, 19-22 2012. article

      3. Orthorhombic BiFeO3, J. C. Yang, Q. He, S. J. Suresha, C. Y. Kuo, C. Y. Peng, R. C. Haislmaier, M. A. Motyka, G. Sheng, C. Adamo, H. J. Lin, Z. Hu, L. Chang, L. H. Tjeng, E. Arenholz, N. J. Podraza, M. Bernhagen, R. Uecker, D. G. Schlom, V. Gopalan, L. Q. Chen, C. T. Chen, R. Ramesh, and Y. H. Chu, Phys. Rev. Lett. 109, 247606 (2012). article

      4. Dipole spring ferroelectrics in superlattice SrTiO3/BaTiO3 thin films exhibiting constricted hysteresis loops, P. Wu , X. Ma, Y. Li, V. Gopalan, L-Q. Chen, Appl. Phys. Lett. 100, 092905 2012. article

      5. Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification, M. Krishnamurthi, J. Sparks, R. He, I. Temnykh, N. Baril, P. A. Sazio, J. V. Badding, V. Gopalan, Optics Express, 20, 4168-4175 2012. article

      6. Phenomenological Thermodynamic Potential for CaTiO3 Single Crystal, Yijia Gu, Karin Rabe, Eric Bousquet, Venkatraman Gopalan, and Long-Qing Chen, Phys. Rev. B, 85, 064117 2012. article

      7. Interfacial Polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction, A. Morozovska, E. A. Eliseev, M. D. Glinchuk, V. Gopalan, Phys. Rev. B, 85, 094107 2012. article

      8. Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field, A. N. Morozovska, E. A. Eliseev, S. V. Kalinin, L-Q. Chen, V. Gopalan, Appl. Phys. Lett. 100, 142902 (2012). article

      9. Investigating Electric Field Control of Magnetism with Neutron Scattering, Nonlinear Optics and Synchrotron X-Ray Spectromicroscopy, M. B. Holcomb, S. Polisetty, A. Fraile-Rodriguez, V. Gopalan, R. Ramesh, International Journal of Modern Physics B 26, 1230004 (2012). article

      10. Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall, Shiming Lei, Eugene A. Eliseev, Anna N. Morozovska, Ryan C. Haislmaier, Tom T. A. Lummen, W. Cao, Sergei V. Kalinin, and Venkatraman Gopalan, Phys. Rev. B 86, 134115 (2012). article Erratum: Phys. Rev. B. 87, 179904(E) (2013).

      11. A magnifying fiber element with an array of sub-wavelength Ge/ZnSe pixel waveguides for infrared imaging, Mahesh Krishnamurthi, Eftihia Barnes, Justin R. Sparks, Rongrui He, Neil F. Baril, Pier J. A. Sazio, John V. Badding and Venkatraman Gopalan, Appl. Phys. Lett. 101, 021108 (2012). article

      12. Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling, Eugene A. Eliseev, Anna N. Morozovska, Yijia Gu, Albina Y. Borisevich, Long-Qing Chen, Venkatraman Gopalan, and Sergei V. Kalinin, Phys. Rev. B 86, 085416 (2012). article

      13. Impact of Free Charges on Polarization and Pyroelectricity in Antiferrodistortive Structures and Surfaces Induced by a Flexoelectric Effect, A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, Long Qing Chen, S. V. Kalinin & V. Gopalan, Ferroelectrics 438, 32-44 (2012). article

      14. Effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial SrTiO3 thin films on DyScO3 substrates, Che-Hui Lee, Volodymyr Skoromets, Michael D. Biegalski, Shiming Lei, Ryan Haislmaier, Margitta Bernhagen, Reinhard Uecker, Xiaoxing Xi, Venkatraman Gopalan, Xavier Marti, Stanislav Kamba, Petr Kuze and Darrell G. Schlom, Appl. Phys. Lett. 102, 082905 (2013). article

      2011

      1. Rotation-reversal symmetries in crystals and handed structures, V. Gopalan and D. Litvin, Nature Materials, 3 April 2011. article

      2. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain, S. Harrington, J. Zhai, S. A. Denev, V. Gopalan, H. Wang, Z. Bi, S. A. T. Redfern, S-H. Baek, C.W. Bark, C-B. Eom, Q. X. Jia, M. E. Vickers, J. L. MacManus-Driscoll, Nature Nanotechnology 6, 491-495 2011. article

      3. Probing Ferroelectrics using Optical Second Harmonic Generation, S. A. Denev, T. T. A. Lummen, E. Vlahos, V. Gopalan, J. Amer. Cer. Soc. 94[9], 2699-2727 2011. article

      4. Structure and energetics of 180° domain walls in PbTiO3 by density functional theory, R. K. Behera, C-W. Lee, D. Lee, A. N. Morozovska, S. B. Sinnott, A. Asthagiri, V. Gopalan, and S. R. Phillpot, J. Phys. Condensed Matter, 23, 175902-1/12 2011. article

      5. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors, E. Eliseev, A. M. Morozovska, S. V. Svechnikov, V. Gopalan, V. Ya. Shur, Phys. Rev. B 83, 235313-1/8 2011. article

      6. Zinc Selenide Optical Fibers, J. R. Sparks, R. He, Noel Healy, M. Krishnamurthi, A. C. Peacock, P. J.A. Sazio, V. Gopalan, and J. V. Badding, Advanced Materials, 23, 1647-1651 2011. article

      7. Characterization of the second-harmonic response of second-order nonlinear probes, H. Li, P. Edwards, Z. Zhang, Y. Xu, V. Gopalan, Z. Liu, J. Opt. Soc. Am. B, 28, 2844-2847 2011. article

      2010 - 1992 Publications